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ABSTRACT 
On a growing scale, we use mobile phones for diverse activities in 
our daily life, for example for entertainment, information or 
education purposes. In our present research, we assess the 
feasibility of using a mobile phone to unobtrusively track its user 
physical activity and the resulting energy expenditure; without of 
use of any dedicated external device. Activity Level Estimator 
(ALE) is an application developed for Android mobile phone 
which uses the built-in sensors. ALE analyzes and calculates how 
much time the user spends per activity level and gives estimation 
of his or her energy expenditure. ALE is designed to be 
operational as an unobtrusive, continuous real-time background 
application for a long-terms trend and behavioral studies in 
elderly care. ALE was tested with a set of users wearing the 
mobile phone in their pocket. Via an extensive user tests, we 
assessed the accuracy of ALE against a dedicated BodyMedia 
Sensewear device. We conclude that ALE is accurate on average 
86% for different levels of walking, and it underestimates user’s 
energy expenditure of 23% during a period of 24 hours. 

Categories and Subject Descriptors 
H.m [Information Systems]: Miscellaneous  

General Terms 
Algorithms, Measurement, Experimentation  

Keywords 
Energy Expenditure, Mobile Phone, Physical Activity Level, 
Accelerometer. 

1. INTRODUCTION 
Much research has been conducted to understand and reliably 
quantify human activity patterns, create devices and deploy 
services that would help and motivate its users to stay healthy and 
fit by increasing their physical activity in daily life, and hence to 
increase their energy expenditure (EE, in kcal burned). Many 
approaches focused on a development of dedicated activity 
recognition devices or algorithms, which however either require 
medical assistance for their reliable operation, or, are obtrusive in 
terms of size, weight, placement or requirement for the user’s 
inputs. Those devices are in most cases a standalone devices 
composed by sensors placed directly on the user's skin [1-4], or 

worn on, e.g., a belt [5]. Other approaches include a use of a 
standalone device called pedometer, that quantifies a number of 
steps taken [6, 7]. There exists also an approach to have all-in-one 
device tracking daily activity patterns of their users by analyzing 
the mobile operator, i.e., GSM cell signal strength, with an 
algorithm based on an Artificial Neural Network [8]. The major 
challenge for a quantification of human activity patterns is a 
minimal obtrusiveness of the device chosen, as well as a 
maximum compliance for its wearer, especially, if the goal is to 
quantify users activity in ambulatory settings, i.e., in their daily 
life and for a long periods of time. In our research, we focus on 
with activity recognition in elderly care, where we aim to 
understand activity patterns of elderly people as well motivate 
them to increase the physical activity in their daily life, facilitating 
longer independent living.  

The recent trends show that people tend to naturally carry their 
mobile phones (especially smart phones) with them along their 
daily life activities [9], hence in our research we focus on a 
feasibility study of an activity estimation algorithm deployed 
directly on a smart phone (and taking advantage of its build-in 
sensors); without any dedicated external devices. The Activity 
Level Estimator (ALE) is a prototype application made for an 
Android mobile phone, having the following requirements and 
design constraints. ALE estimates the activity level based on the 
user's movement patterns using the phone’s build-in 3D 
accelerometer and it monitors the acceleration density during a 
defined time interval, assuming that the phone is worn in user’s 
pocket, near the user's hip. The activity level is computed based 
on the Metabolic Equivalent of Task (MET) [10, 11] determined 
by the acceleration during a time interval and then adjusted with 
the Resting Metabolic Rate (RMR) [12] of the user. The ALE’s 
MET was been calibrated in a multiuser test conducted in the first 
phase in our research. Furthermore, ALE accuracy has been 
evaluated along user real life activities against a dedicated, 
external activity monitoring device called SenseWear by 
BodyMedia [13]. This device is an armband device considered as 
a gold standard for ambulant activity estimation [14, 15]. In this 
paper, we present the development process of ALE and its 
accuracy evaluations results acquired along users test. 

2. METHODS 
2.1 Subjects Study Phases 
ALE has been developed based on a close collaboration and 
feedback from a large group of its potential users. Particularly, 
two users studies were conducted during the design and 
implementation of ALE. The first user study was made to initially 
calibrate the ALE and it was conducted with 15 adult participants 
(8 female and 7 male) (c.f. Section 2.4). The second user study 
was conducted to estimate the accuracy of ALE during real life 
activities and conditions. This user study was composed of short-
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term study of walking activity and a long-term study of daily life 
activities, including driving, working on a computer and watching 
TV. The short-term study involved 7 users (2 female and 5 male) 
for the short-term study and by 1 user (male) for the long-term 
study (c.f. Section 4). For both study, we collected participant's 
personal information like weight, height and age. We also noted 
the type of the shoes and pants worn along the experiments. 

2.2 Mobile Phone Instrumentation 
The body acceleration was monitored by the 3D accelerometer 
build-in in the mobile phone (HTC Desire with Android operating 
system version 2.1) and with a frequency set at 40 Hz (chosen 
based on the dedicated controlled-lab  experiments for the ALE 
sensitivity and for minimum phone’s battery use; the report on 
these results is left outside of the scope of this paper).  

The mobile phone was worn in the front pocket (left or right, as 
chosen by the user) of the user's pants. The phone was not 
required to have a pre-defined fixed position. For the 
accelerometer readings from the phone (x, y, z), we have 
compensated the gravity factor depending on the given orientation 
of the phone. After the gravity compensation, we derived the 
vector of acceleration (Va m/s2), i.e., independent from the given 
orientation of the phone. This approach was also taken in a similar 
research[16]. 

2.3 Data Processing 
ALE analyzes the raw accelerometer data Va as follows. First, it 
filters the row accelerometer signal with two filters and a scale, 
then it calculates a median acceleration density during a 
predefined observation time interval (DT). Finally, it compares 
this result with the activity-predefined levels. 
ALE filters the Va to remove noise and also to condensates the 
signal in a time interval. There ecist 2 filters cascaded one after 
other. The first filter keeps only high values on a sample of 16 Va 
data points with a moving sample window during the time interval 
DT. The second filter is a second pass over the data and calculates 
the average on a smaller sample (8 Va data points) Finally we 
scale all data from the time interval DT with a factor of 20%. This 
factor was defined during the dedicated controlled-lab 
experiments and it enables to increase the visibility of high Va 
values in the signal and to avoid overlapping results among 
defined thresholds. The time interval DT was defined by an 
empirical experimentation and was fixed to 2 seconds (~60 
accelerometer data points). We have made this choice via 
heuristics, i.e., if the time interval is too short, the computed Va 
median too much vary between consecutive DT, and if it was too 
long, low value data points minimized the result resulting in an 
under-estimation of activity level. We also use DT to detect if the 
acceleration indicates a continuous longer activity spanning across 
multiple DTs, or it is just a small movement of the body within a 
DT. Finally, we compute the Va median of the filtered signal 
during the DT and we scale it to increase the difference among the 
acceleration density. This median represents the level of the 
acceleration density. We used median instead of an average 
because the average was too influenced by outliers existing in the 
accelerometer data; the median reflected better the user’s activity 
levels depending on the density of the accelerometer signal.  
The Figure 1 represents the data resulting for 6 seconds of activity 
(three footsteps) along the data processing phases described 
above. We can observe from the grey thin line (raw signal) the 
result after filtering with the dash line (filtered signal). The grey 
dot line represents the time interval boundaries (DT = 2sec) and 

the black bold line the median level of the acceleration density 
computed for this period DT.  

 
Figure 1 From the accelerometer raw signal to the median 

acceleration density 
 

2.4 Thresholds calibration: First User Study 
To estimate if the median level of the acceleration density (Va) 
corresponds to a given physical activity level, we defined different 
thresholds. Each threshold corresponds to a physical activity level 
predefined as follow: Sedentary, Very low, Low, Moderate and 
Vigorous. Sedentary level corresponds to a non-activity like 
standing, sitting or lying, Very Low level to a very slow walking, 
Low level to walking at a normal speed, Moderate level to a fast 
walk (or a slow run) and Vigorous level to very active physical 
activities like running.  
Each level matches to a Metabolic Equivalent of Task values 
(MET) [10, 11]. The thresholds were defined by the user study, in 
which we asked 15 subjects to walk at different speeds with a 
minimum of 30 steps each, corresponding to three activity levels: 
Very Low (VL), Low (L) and Moderate (M). The prototype was 
installed on the mobile phone and worn by participants in the 
front left pocket of the pants. We analyzed the results with respect 
to user height, weight and gender variables, to determine their 
influence on the acceleration density. Clothes and shoes were also 
variables that influenced on a small scale the results, but our user 
study was too short for a strong analysis of these variables. 
The median level of the acceleration density thresholds were 
actually already pre-defined during the ALE prototype 
implementation; our main goal for this user test was 
generalization, i.e, adjustment of these thresholds for many users 
with different physical characteristics. Thresholds values 
correspond to the median result of the vector of acceleration (Va 
m/s2) in DT scaled, i.e., increased by 20% as explained earlier.  
For the VL level, we defined it at  Va >= 1.5 and < 7, L level at 
Va >= 7 and < 12, and M at Va >= 12 and < 18. Figure 2 presents 
an example of result from one user. We can observe three 
activities separated by the dash line (representing the three walks). 
Dash lines also represent the high limit of thresholds. The bold 
line represents the acceleration density median computed for each 
DT. We observe that the three activities stay well under the limit 
of the corresponding thresholds. The first and the last median 
measured for each activity shows that it is all the time below the 
threshold. When the user starts to walk, he accelerates from a non-
movement. Similarly, when user stops his walk, he decelerates. 
For that reason, in ALE we added the condition that median from 
a nth DT was valid to be classified in some threshold only if the 
DT before (n-1) or after (n +1) was also classified. This condition 
was also made to remove false movements detected within a DT 
while the user is sitting or standing. 



 
Figure 2 Example result for the first test study represented the 

three walks activities 
 

 
Figure 3 Results for each activity level of the first user study 

The Figure 3 represents results for three activity levels of each 
walk. We can see that some results overlap amongst the activity 
levels. To explain these overlapping results, we analyzed the 
influence of the following variables on the results: user height, 
weight and gender. Regarding the height, we observed that it had 
an influence and tried to understood the reason for that. Most 
probably it is related to length of the user  legs. When the mobile 
phone is on the pocket, it follows the rotation of the leg, so the 
movement can be measured by the angle made by the leg. Of 
course, if the user is tall, the distance - performed by the foot - 
from the start to the end of the step will be larger, than if a user is 
shorter, but angle will be quite the same. On the other side, the 
movement's speed will be higher for a taller user with a high 
distance performed by the foot. For the weight variable, the 
acceleration was influenced by weight as a vector of force. We 
found however, that the gender was the variable with the most 
influence. For this variable, we do not have any explanation apart 
from an anatomy and resulting difference in walking style. 
In the Table 1, we resume users characteristics and results for 
walking activities. Values given on the table represent the mean 
activity level over all subjects for each walking session. . 
 

Table 1 Characteristics and results of subjects 
 

 Female (n = 8) Male (n = 7) 
 Weight, kg 63.88 ±12.12 (51-85) 82.14 ±12 (65-100) 
 Height, cm 166 ±6.6 (156-175) 178 ±3.9 (172-183) 

M
ea

n 
A

ct
iv

ity
 (V

a)
 Very low 

level 3.50 ±0.8 (2.27-4.42) 4.95 ±1.80 (1.96-
6.92) 

Low level 7.23 ±1.68 (4.86-
10.22) 

10.51 ±1.31 (8.91-
12.53) 

Moderate 
level 

13.67 ±3.12 (9.26-
18.1) 

15.62 ±1.59 (13.37-
17.77) 

* Values represent mean, standard deviation and the range in parentheses. 

 
From Table 1, we observe that the values are lower for female 
participants. The L level threshold definition was too high for 
them; 5 out of 8 values from women subjects for this level were 
lower than 7 with a range of 4.86 to 6.62 (recall that the limit was 
set at 7 to 12). Therefore we changed our ALE  algorithm to take 
into account the gender variable and adapt the thresholds 
correspondingly. For female, we set the L level for 6 to 11. To 

resume, we have used the first user study to calibrate the 
thresholds Va for different activity levels, we have concluded that 
the main adaptation of our algorithm shall be done based on the 
gender variable.  

2.5 Energy Expenditure Processing 
Each activity level (VL, L, M, V) is represented by a basal MET 
value. We defined these values based on work of [10, 11] and on 
internal experimentations done with the SenseWear device from 
BodyMedia [13] (see Table 2). 
Each MET is adjusted with the RMR of the user, after work of   
Byrne et al. [12], proving that the basal MET (1 MET) 
overestimates the energy expenditure by 20%. They have 
concluded that based on large scale user study (500+ subjects), 
where they have measured the RMR of each person with different 
methodologies, e.g., indirect calorimetry using a ventilated hood 
system and respiration chamber. Based on these and on 
controlled-lab activity monitoring experiments, they proposed to 
adjust the MET level with the measured RMR as follows (1).  

MET_adjusted = MET level * (1MET/ RMR (kcal-kg-1-h-1)) (1) 
ALE estimates the EE in calories based on the time spend per an 
activity level (t), the MET (following the activity level) adapted 
with (1) (MET_adjusted), and the user weight in kilograms (w) 
along the equation (2). The RMR used for (1) was estimated with 
the Harris-Benedict equation [17]. 

EE(kcal) = MET_adjusted * t * w (2) [18] 
The Total Energy Expenditure (TEE) is also estimated. TEE is a 
prediction of calories burned in 24 hours for the current day; at 
midnight it estimates calories burned for the next 24h assuming 
resting (i.e., standing, sitting or lying) at the sedentary activity 
level and along the day, it adds additional calories burned 
corresponding to different activity levels. 
 

Table 2 MET values per activity level 
Activity level MET 

Sedentary 1 

Very low (VL) 2.5 

Low (L) 4.5 

Moderate (M) 6 

Vigorous (V) 9 

 

3. DESIGN AND IMPLEMENTATION  
ALE was developed for Android operating systems (version 2.1) 
and uses phone's build-in 3D accelerometer. ALE starts with the 
system and runs continuously in the background of the OS, even 
when the phone is not used and the screen is locked. A simple 
GUI was also created to manage the user settings and see the 
results in real-time. On this screen, ALE displays four color bars 
(one per each activity level VL, L, M and V) corresponding to the 
duration of activity (Figure 4) in the current day (i.e., since 
midnight). The scale of the displayed figures can be adjusted via a 
touch. We have made the choice to not display the sedentary level 
because the time for it is generally much higher comparing the 
other activity levels, and to keep the user's motivation high, we 
keep this information in the background. The GUI display results 
in kcal computed for all activity levels (except the Sedentary 
level) and the TEE in kcal  predicted for whole 24 hours. 



 
Figure 4 Screenshot of the main screen of ALE 

All day results are stored on the same phone on a SQLite database 
and the user can see past result on his mobile phone. For our 
experimentation, we have also added a functionality to log all 
events of the application to the file. 

4. ALE ACCURACY 
To evaluate the ALE accuracy, we have conducted a study in two 
phases with seven subjects. The subjects at the same time were 
wearing the armband device SenseWear and the mobile phone 
running ALE.   
SenseWear is a dedicated  portable device for activity monitoring 
(Figure 5) and manufactured by BodyMedia [13]. The device is 
worn on an arm over the triceps muscle and has the capability to 
monitor the wearer’s energy expenditure. It contains sensors like: 
3D accelerometer, galvanic skin response, skin temperature and 
heat flux. SenseWear measures the total energy expenditure (TEE 
kcal), physical activities levels (MET), steps and sleep efficiency.  

 
Figure 5 SenseWear device from BodyMedia [13] 

SenseWear is considered the ‘gold standard’ for ambulatory 
assessment of energy expenditure [14, 15] and therefore we 
selected it as the base device to compare MET results with ALE. 
The first phase was conducted to determine the accuracy of MET 
estimation of ALE during a dedicated walking activity. The 
second phase was to determine its accuracy during a complete day 
(24h), where the subject followed his usual daily life activities. 

4.1 First Phase: Walking Activities 
For the first phase of the user study, we asked the subjects (n=7) 
to walk outdoors in an open space having a measurement session 
lasting minimum 15 minutes. We asked subjects to walk 
sometimes slowly (VL and L activity level) and sometimes 
quickly (M). Walks were conducted in different geographical 
places with different grounds. Most of these walks were on road 
with different elevations. SenseWear and ALE were configured 
based on the subject’s the weight, height, gender and age. We 
have made note upon the subjects’ clothes as well (i.e., where the 
phone with ALE was put), and shoes type. SenseWear was 
additionally configured along the subject being left or right 
handed. For ALE this is not an important variable, because the 
phone with ALE is located in the lower part of the user’s body.  
The Table 3 resumes the characteristics of the subjects in this 
study. 
 

Table 3 Characteristics of subjects in evaluation  
Subjects Female (n = 2) Male (n = 5) 

Weight, kg 62.5 ±14.8 (52-73) 70 ±9.6 (65-87) 

Height, cm 165.5 ±13.4 (156-175) 180.2 ±3 (178-184) 

Age, year 25.5 ±3.5 (23-28) 29.2 ±2.5 (26-31) 

RMR, kcal 1439.8 ±184.5 (1309 – 
1570) 

1731.9 ±153.4 (1640 – 
1994) 

* Values represent mean, standard deviation and the range in parentheses. 

 
SenseWear returns MET values measured during the one-minute 
period, while ALE during a 2-seconds period. As SenseWear was 
our baseline device, hence we averaged ALE’s MET values for 
every minute. Then we computed the average MET value during 
the complete walk session for both devices. Finally, we analyzed 
in percent the difference for the whole session between the 
SenseWear and ALE MET results using the Mean Percent Error 
(MPE) (3), and the minute-by-minute difference using the Mean 
Absolute Percentage Error (MAPE) (4).   

 
Moreover, we computed the proportion of overestimation and 
underestimation of MET by ALE comparing to SenseWear for the 
complete session. 

 
Figure 6 Example 1: MET per minute results from both 

devices performed by one subject  
The Figure 6 shows the result of a walk performed by a male 
subject along 23 minutes walk on a street road. The black line 
represents MET estimated by the device SenseWear, The grey 
line, MET estimated by ALE and the corresponding MAPE values 
are summarized in Table 4.  
 

Table 4 Example 1 ALE evaluation results 

 
Sensewear ALE 

MPE for the 
session 

Average MET 5.12 5.35 4.47% 

Overall MAPE per minute 11.98% 

Proportion of MET overestimation in a session 60.87% 

Proportion of MET underestimation in a session 39.13% 

 



For the given subject test example, ALE underestimates MET 
twice (Figure 6), at minute 2 and 12, when the subject stopped 
walking for less than a minute. It means that ALE was more 
sensitive for this case than SenseWear. This illustrates our point 
of difference in results granularity.  During the session, we asked 
to the subject to reduce his speed and after about 7 minutes to 
walk faster. MET were estimated from thresholds and for this 
case, the walk activity was the edge of being classified as L/M 
level and ALE classified it as a M (moderate) level (c.f. Section 
2.4). Therefore, from minute 13 we observe that ALE 
overestimates MET. 
If we compare the MPE and MAPE per minute results from the 
Table 4 we conclude as follows. For this particular case of 
session, we found that ALE overestimates of 4.47% the total 
calories burned during this particular test. For the MPE, most 
errors were compensated by the over / underestimation trends 
during the whole session and did not represent the average error 
per minute, being 11.98%. 

 
Figure 7 Example 2: MET per minute results from both 

devices performed by one subject 
 

Table 5 Example 2 ALE evaluation results 

 

Sensewear ALE MPE for the 
session 

Average MET 3.95 3.83 -6.99% 

Overall MAPE per minute 12.52% 

Proportion of MET overestimation in a session 47.62% 

Proportion of MET underestimation in a session 52.38% 

 
The Figure 7 represents a 42 minutes Low activity level walk 
session in a forest with small hills where the subject took his dog 
for a walk. The road was not flat and had lots of holes and stones. 
The given environment was very interesting because such ground 
was never tested before and based on the results we expected to 
see how ALE was able to compensate disjointed body 
movements. At different moments along the session, the subject 
stopped walking because of the dog. These stops resulted in errors 
and increased the ALE underestimation proportion as given in the 
Table 5. Finally, we found an underestimation of 6.99% for the 
MET average values. 
The Table 6 represents all results for the first evaluation phase of 
ALE along the walking sessions for 7 subjects. With the average 
MAPE per minute, we conclude that ALE is accurate at 86% for 
walking activities. It is not possible to clearly determine if ALE 
has more tendency to over- or under-estimate user’s activity level, 

because the trends indicate tendency for both, and particular trend 
is user dependent. 

4.2 Second Phase: Real World Evaluation 
Because our goal is to use ALE in real world environments, along 
the user’s daily life activities and along long periods of time for 
the user’s behavioral studies, we conducted a long-term ALE 
evaluation along an arbitrary three days from user’s life, 
accumulating in total about 30 hours of continuous user’s activity 
data. There were 3 separate sessions lasting 6 hours, 15 hours and 
9 hours. We instructed the subject to follow normal daily life 
activities and to disconnect both devices when sleeping. 
Characteristics of the subjects are: male, 65 kg; 178 cm; 31 years 
old; RMR 1640 kcal/day. 
We present example results of this test below (Figure 8, Figure 9 . 
The figures present MET values per minute for both devices. We 
have added annotations into figures that represented some 
activities of the user, like driving, shopping and working (the 
labels were provided by the user at the end of each day). 

 
Figure 8 MET per minute results from both devices (6 hours) 

 

 
Figure 9 MET per minute results from both devices (15 hours) 
In the Table 6, we also include the evaluation results for the 
second phase. We observe that ALE has an MAPE per minute 
higher for the second phase than for the first one and it tends to 
underestimate MET by 27.9%, 95.05% of the time. That means 
that ALE was not able to detect all kind of activities like 
SenseWear did. In Figure 8 and Figure 9, we represented different 
subject’s daily life activities. For example, in Figure 8, we note 
driving, which SenseWear classified as activity with a MET from 
1.2 to 4, and ALE with MET from 1 to 1.2. ALE was not designed 
to detect this kind of sedentary physical activities. Again, on the 
Figure 8, we observed a long period when the subject was lying 
on a couch and worked on computer, which was not properly 
classified by ALE. Other example on the Figure 9, we noted a part 



of the day when the subject worked on a chair. We think that 
SenseWear is able to quantify energy expenditure for these 
physical as well as cognitive activities because of its additional 
sensors like skin temperature and galvanic skin response. ALE 
was not able to detect that because, except arm, the subject did not 
move. However, as we see in Figure 8, the shopping activity was 
detected by ALE almost as accurately (average MET 1) as by 
SenseWear (1.2 MET).  

5. DISCUSSION AND CONCLUSION 
We developed an activity level estimator deployed on a 
commercially available mobile phone, this ensuring its minimal 
obtrusiveness (i.e., it is a background application) and maximum 
compliance (i.e., as research shows that we tend to carry our 
phone anywhere with us). We evaluated ALE against SenseWear 
from BodyMedia, a gold standard for energy expenditure 
estimation.  
Our results showed an overall average error of 14.29% (hence 
accuracy of 85.71%) per minute (and 6.49% per a session) for 
walking only activities, and average error of 23.41% per minute 
(and 27.9% per a session) during different daily life activities, like 
driving, shopping, working or just relaxing. The SenseWear 
device detected energy expenditure for cognitive sedentary 
activities, for example working while sitting on a chair. ALE was 
designed to detect and quantify body movements and was not able 
to detect this kind of sedentary activities. The fact that ALE 
underestimates the energy expenditure of the user can be seen 
positively, assuming that by this means, it can prevent the user 
from overestimating his energy intake needs and from overeating.  
Finally, we conclude that overall evaluation results for ALE are 
very encouraging and we proved that it is feasible to develop an 
accurate activity level monitoring, quantifying user body 
movements on a commercial mobile phone. The SenseWear 
device uses other build-in sensors, like galvanic skin response and 
temperature to achieve its highest accuracy, but these sensors are 
(not yet) available in a mobile phone.  
We are preparing more experiments and more user tests, which 
results will enable us to improve our application. For example at 
first, we plan to conduct a user study with the use of a treadmill 
with more subjects walking the same distances at the same speed. 
Moreover, we plan to conduct more user studies along their daily 
life activities, and we are especially looking forward to apply our 
solution for elderly care purpose.  
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