

#### Performance evaluation of a Transport System supporting the MobiHealth BANip: Methodology and Assessment

K.E. Wac MSc. & ing. R.G.A. Bults 22 November 2004, WA 204



#### **Presentation layout**

- Introduction
  - MobiHealth project, MobiHealth system
- Problem description
  - End-user requirements, MobiHealth transport system, research question
- Approach
  - MobiHealth transport system performance evaluation methodology, methodology outline (speaker switch)
- Conclusions
  - Supported end-user requirements, MobiHealth system recommendation





#### Introduction



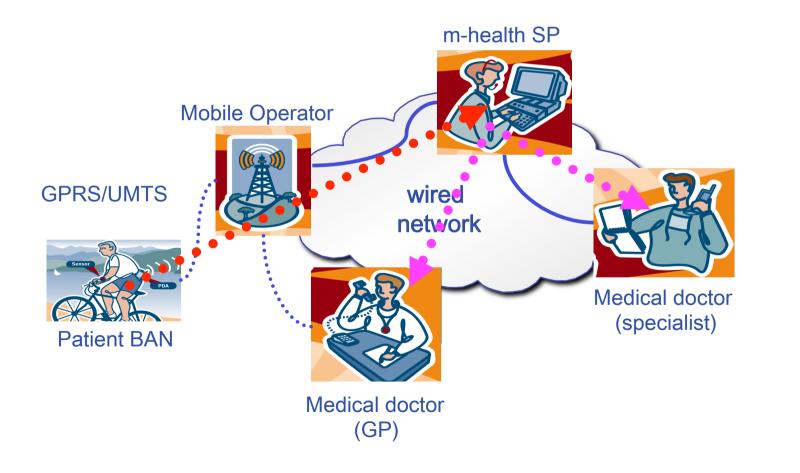


### **MobiHealth project**

- MobiHealth was an European project that explored the possibilities of GPRS and UMTS mobile communication (transport) systems to support emerging m-health services
- Service delivered by the MobiHealth system is a m-health service instantiation
- How does the MobiHealth system work?
  - Service platform
  - System components
  - BAN interconnect protocol (BANip)

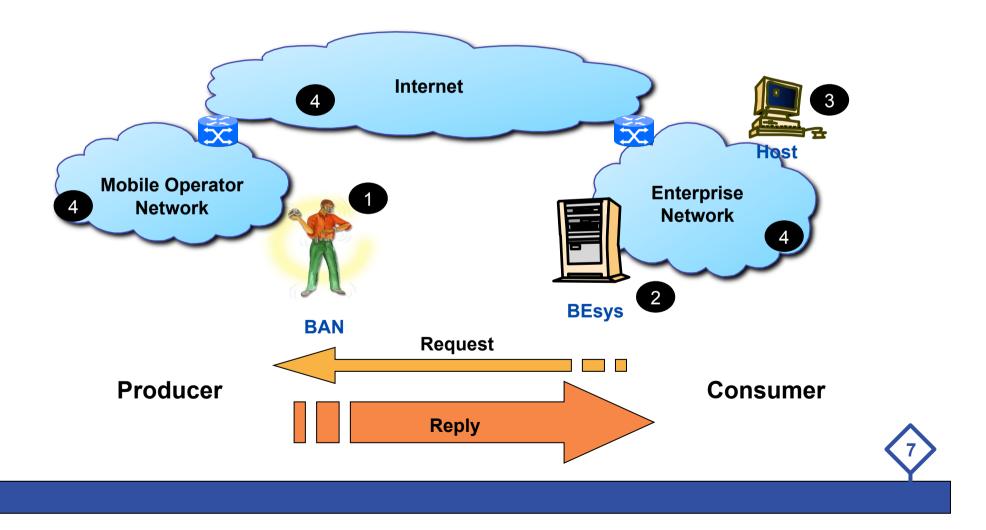





#### **Service platform**

- Offers a m-health <u>service set</u> to <u>end-users</u> in the healthcare domain
- Service set (m-health SP)
  - Alarm service
  - Content service (incl. streaming)
  - Monitoring service (ambulatory) ← focus
- End-user roles
  - Patient
  - Trained nurse and paramedic
  - Medical doctor






#### **Operational overview**





#### **System components**





#### BAN

- Wireless sensor system
  - vital signs measurements
- Mobile Base Unit
  - measurements processing
  - intra- and extra-BAN communication
- Wireless communication gateway







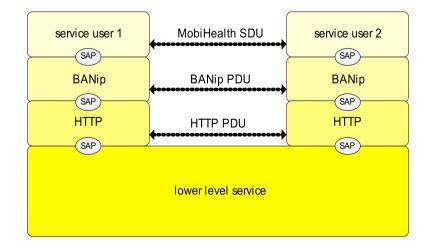



**BEsys** 

- Authentication and authorization (proxy webserver)
- Secure data transmission (proxy webserver)
- BAN management and control
- Content provisioning (offline, online)



#### Host


• PortiLab 2: vital signs visualization/interpretation





## BANip

- Special purpose TCP/IP-based application protocol to support communication between wireless BANs (i.e. MBU) and a wired BEsys
- Runs on top of HTTP: supported by mobile operators





## **Problem description**





#### **End-user requirements**

- MobiHealth service set selection
  - Monitoring service (MobiHealth trials)
- End-user requirements not defined
  - No vital sign sample frequency specified
  - No maximum vital sign sample delay specified (e.g. realtime or non-realtime?)
  - No maximum vital sign sample delay variation specified
- Conclusion:

MobiHealth monitoring service is a <u>best-effort</u> service





### MobiHealth transport system

- BANip SDU exchange service must support the <u>best-effort</u> monitoring service
- Lower Level Service must support required BANip "QoS"
- Lower Level Service is a transport service delivered by the MobiHealth transport system
- MobiHealth transport system is implemented as a reliable UMTS based communication system with <u>restricted</u> resources





#### Conclusion

- MobiHealth monitoring service is a <u>best-effort</u> reliable service
- BANip SDU exchange service and MobiHealth transport service must fulfill the <u>best-effort</u> reliable service requirement
- MobiHealth transport system implementation: <u>TCP/IP on top of a UMTS based transport system</u>

Research question:

How to derive the best possible quality of service of the selected MobiHealth transport system?



## Approach





# MobiHealth transport system performance evaluation methodology

Note: Dedicated (pre) commercial UMTS transport sub-system available  $\rightarrow$  performance measurements is an option!

- Development of a generic measurements-based performance evaluation methodology
- Design and implementation of a distributed performance evaluation system containing workload generators and measurement functions
- Design and implementation of a basic statistical application



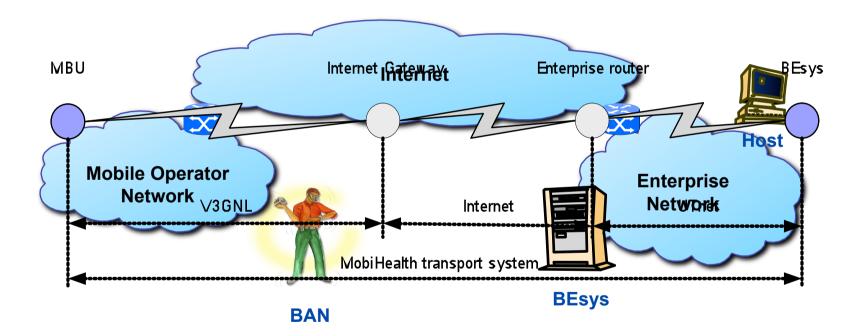


#### **Performance evaluation methodology**

- 1. State the Goals and System Definition
- 2. List Services and their Outcomes
- 3. Select Performance Criteria (i.e. Metrics)
- 4. List System and Workload Parameters
- 5. Select Factors and their Levels
- 6. Select System and Workload Parameters
- 7. Design and Execute the Experiments
- 8. Analyse, Evaluate and Interpret the Data
  - a. Select Model Representation
  - b. Parameterise the Model
  - c. Validate and Verify the Model
- 9. Present the Results

- <u>Preparation</u>: sequential execution of phases 1-6 (reflection!)
  - Must result in precise description of measurements experiments
  - Execution: Phases 7-8 (time consuming activities!)
- <u>Assesment and</u> presentation: Phases 8-9

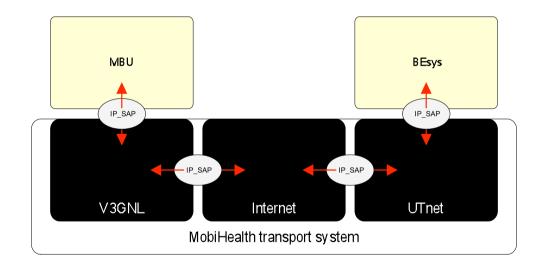





- State the Goals
  - Characterize the quantitative behavior of a MobiHealth UMTS based transport system
  - Determine the optimal BANip PDU size and PDU rate for a specified (maximum) delivery time
  - Determine if the PDU size of the current BANip implementation is chosen wisely
- System Definition
  - V3GNL (system of interest)
    - MobiHealth (IP based) transport system decomposition
    - "Black box white box" model
    - SoD and SUT  $\leftarrow$  focus





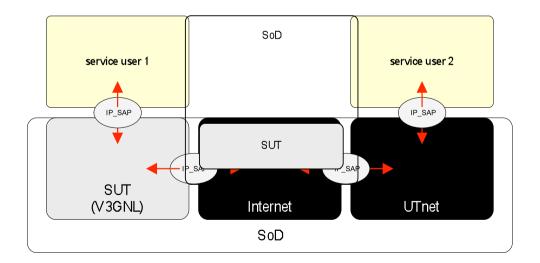

## MobiHealth transport system decomposition







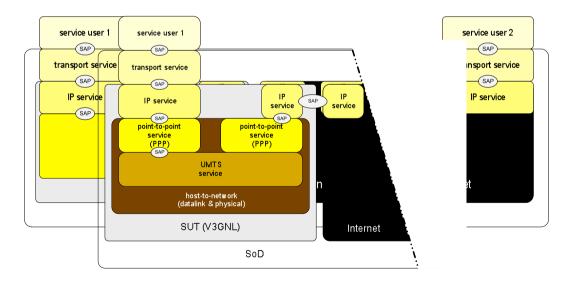
#### "Black box – white box" model








#### SoD and SUT

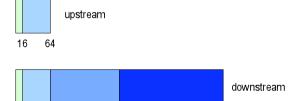

- System of Discourse: reliable MobiHealth (IP based) transport system
- System Under Test V3GNL







- List Services and their Outcomes
  - SoD/SUT service decomposition needed!
    (Recall: SoD delivers a reliable transport service)








## Methodology phase 2 (cont.)

- List Services and their Outcomes
  - SoD
    - Service is available
    - Service is dependable and accurate
      - TCP service (no loss of data, no data corruption)
  - SUT
    - IP datagram service
    - Asymmetrical service with different uplink and downlink transport capacity
    - Transport service capacity correlates to volume and rate of uplink and downlink datagrams



128

16 64



384



- Select Performance Criteria (i.e. Metrics)
- ITU-T 3x3 matrix approach
  - Performance evaluation goals are speed-related:

Speed is the performance criterion that describes the delivery time that is used to successfully perform a transfer function and the rate at which this transfer is performed

| performance<br>parameter<br>performance<br>criterion | delay   | jitter  | goodput |
|------------------------------------------------------|---------|---------|---------|
| speed                                                | primary | derived | derived |



## Methodology phase 4 & 5

- List System Parameters and Workload Parameters
- <u>System parameters</u>: system description related parameters; fixed for every performance measurement of a SoD/SUT instantiation
- <u>Workload parameters</u>: parameters for which the effects on the performance measurement can be investigated





System parameters

and

Select

Workload parameters

| comp<br>sysie            |                                                                  | nb, pcl           | nb, pel        | nb, pcl       | nb, pcl,<br>pc2 | iPAQ.<br>pcl  | nb, pcl                | nb, pcl                                                                 | nb, pcl                                                            | nb, pcl                                   |
|--------------------------|------------------------------------------------------------------|-------------------|----------------|---------------|-----------------|---------------|------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|
| intra<br>comm.           |                                                                  | USB               | Bhietooth      | PCMCIA        | USB             | Bhietooth     | USB                    | USB                                                                     | USB                                                                | USB                                       |
| UMTS<br>terminal         |                                                                  | Nokia<br>6650     | Nokia<br>6650  | PC Card       | Nokia<br>6650   | Nokia<br>6650 | Nokia<br>6650          | Nokia<br>6650                                                           | Nokia<br>6650                                                      | Nokia<br>6650                             |
| APN                      |                                                                  | utwente<br>nl     | utwente.<br>nl | utwente<br>nl | utwente<br>nl   | utwente<br>nl | web.<br>vodafore<br>nl | utwente<br>nl                                                           | utwente<br>nl                                                      | utwente<br>nl                             |
| buff.s<br>appl.          | æck.                                                             | 64.64             | 64.64          | 64.64         | 64.64           | 64.64         | 64.64                  | 64.64                                                                   | 32.64                                                              | 32.32                                     |
| N                        |                                                                  | \$0D_1            | ‰D_4           | \$0D_5        | \$0D_6          | SoD_7         | \$0D_8                 | \$0D_1                                                                  | ‰D_2                                                               | \$0D_3                                    |
| Service<br>type          |                                                                  | Confirmed service |                |               |                 |               |                        | Unconfirmed service                                                     |                                                                    |                                           |
| Sam                      |                                                                  |                   | 500            | 500           | 500             | 500           | 500                    | 500                                                                     | 500                                                                | 500                                       |
|                          | e <sup>44</sup>                                                  | 500               | 500            |               |                 |               |                        |                                                                         |                                                                    |                                           |
| size<br>Mat              | e <sup>44</sup>                                                  | 20x20             | 8x8            | 8x8           | 8x8             | 8x8           | 8x8                    | 524 Bytes                                                               | 524 Bytes                                                          | S24 Bytes                                 |
|                          | <b>הה</b> ג<br>סב                                                |                   |                |               | 8x8             | 8x8           | 8x8                    | 524 Bytes<br>x                                                          | S24 Bytes<br>x                                                     | 524 Bytes<br>x                            |
| Mat                      | <b>nix</b><br>0.5<br>0.6                                         |                   |                |               | 8x8             | 8x8           | 8x8                    | -                                                                       |                                                                    | -                                         |
| Mat                      | 05<br>0.7                                                        |                   |                |               | 8x8             | 8x8           | 8x8                    | x                                                                       | x                                                                  | x                                         |
| Mat                      | e <sup>44</sup><br>brix<br>0.5<br>0.6<br>0.7<br>0.8              |                   |                |               | 8x8             | 8x8           | 8x8                    | x<br>x<br>x                                                             | x<br>x<br>x                                                        | x<br>x<br>x                               |
| Mat                      | 05<br>06<br>07<br>08<br>09                                       |                   |                |               | 8x8             | 8x8           | 8x8                    | x<br>x<br>x<br>x                                                        | x<br>x<br>x<br>x                                                   | x<br>x<br>x<br>x                          |
| Mat                      | 05<br>05<br>06<br>0.7<br>08<br>09<br>1.0                         |                   |                |               | 818             | 8x8           | 818                    | x<br>x<br>x<br>x<br>x                                                   | x<br>x<br>x<br>x<br>x                                              | x<br>x<br>x<br>x<br>x                     |
| Mat                      | 05<br>06<br>07<br>08<br>09<br>10<br>1.1                          |                   |                |               | 8x8             | 818           | 8x8                    | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                               | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                          | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x |
|                          | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12                     |                   |                |               | 8x8             | 818           | 8x8                    | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x           | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×      |
| Mat                      | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>15               |                   |                |               | 8x8             | 81/8          | 8x8                    | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>× |
| Mat                      | 200<br>05<br>06<br>07<br>08<br>09<br>10<br>1.1<br>12<br>15<br>20 | 20x20             | 8x8            | 818           |                 | 818           | 8x8                    | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                     | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×      |
| Mat<br>Saturation factor | 05<br>06<br>07<br>08<br>09<br>10<br>11<br>12<br>15<br>20<br>1    |                   |                |               | 8x8             |               | 8x8                    | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>× |
| Mat                      | 200<br>05<br>06<br>07<br>08<br>09<br>10<br>1.1<br>12<br>15<br>20 | 20x20             | 8x8            | 818           |                 |               |                        | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                     | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>× |



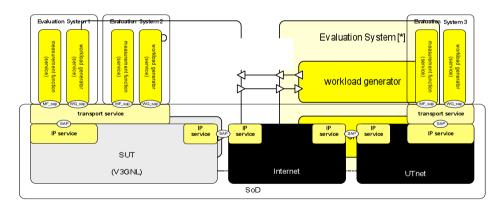


• Design and Execute Experiments

#### Experiment 1

- 11 experiments
- Measurement for each workload parameter repeated 500 times

| TestID             | 01               |                                                                  |                    |               |  |  |  |
|--------------------|------------------|------------------------------------------------------------------|--------------------|---------------|--|--|--|
| APN                | utwerte.nl       |                                                                  |                    |               |  |  |  |
| HOPS               | Server <> Client |                                                                  |                    |               |  |  |  |
| Test description   | Confirmed Ser    | Confirmed Service, 20x20, UMTS-UT/USB, Server/Client, 1 Terminal |                    |               |  |  |  |
| Extra <u>comms</u> | UMTS             | UMTS                                                             |                    |               |  |  |  |
| Intra <u>comms</u> | USB              |                                                                  |                    |               |  |  |  |
| Clock sync         | Tardis 2000 V1.5 |                                                                  | 0.712 seconds/day  | ASUS notebook |  |  |  |
| Equipment:         |                  |                                                                  |                    |               |  |  |  |
| Identifier         | Name             | HW-<br>platform                                                  | SW-platform        |               |  |  |  |
| ClientId 01        | Utip194          | P4, 2.4 GHz,<br>512 MBmem                                        | WindowsXP, IDK 130 |               |  |  |  |
| ServerId 01        | Freelander       | mP3, 1 GHz,<br>640MBmem                                          | WindowsXP, JDK 130 |               |  |  |  |
| Terminal           | Nokia l          | Nokia 6650                                                       | PR4                |               |  |  |  |

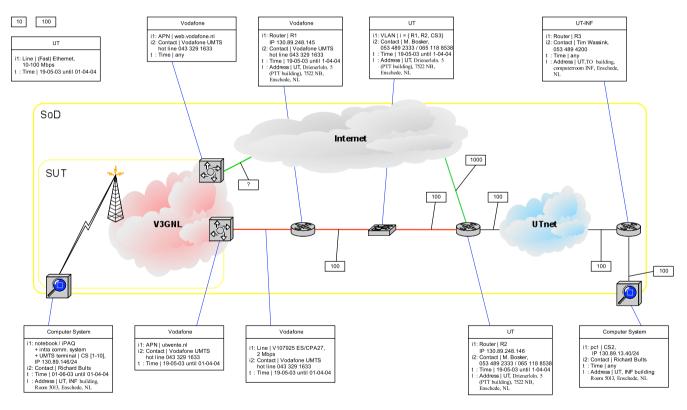

• 439.000 measurements to perform!





### Methodology phase 7 (cont.)

• Need for design and implementation of a distributed evaluation system




fsecticeatieiew



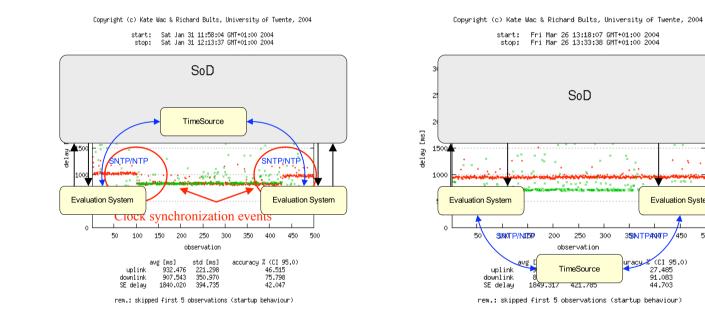


#### Methodology phase 7 (cont.)



real-world view




- Analyze, Evaluate and Interpret the Data
- Need for design and implementation of an basic statistical application
  - Data retrieval and correlation from different evaluation systems
  - Calculation of:
    - uplink, downlink delays
    - delay mean and standard deviation
    - accuracy for 95% confidence interval
  - Visualization of the raw data measurements
  - Storage of the visualized raw data and corresponding statistics





#### Methodology phase 8 (cont.)

Raw data preliminary evaluation: timing events



Inband

Out-of-band

Evaluation System

450

27.485

91.083

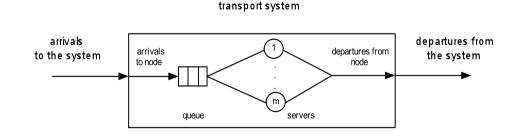
44.703

500



## Methodology phase 8 (cont.)

- a. Select Model Presentation
- b. Parameterize the model
- c. Validate and Verify the Model


<u>Rationale</u>: If no measurements data, a performance model of a benchmark UMTS transport system can be used to determine the application protocol PDU size, rate and a transport delay



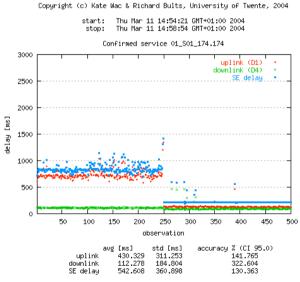


### Methodology phase 8 (cont.)

- UMTS transport system simple high-level model
  - Uplink (monitoring service context)
  - PDU size 524 Bytes (1 TCP MSS)
  - Light-load scenario (1 < PDU rate < 12)</li>



D/G/3 (Deterministic arrival / Generally distributed service time / 3 servers)

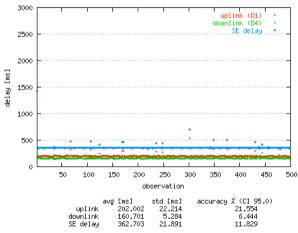



- Present the Results
- SUT uplink/downlink behavior
  - Capacity switching behavior
  - Goodput
  - Influence of system parameters
- SUT uplink behavior (monitoring service context)
  - Delay and jitter
  - Scalability characteristics





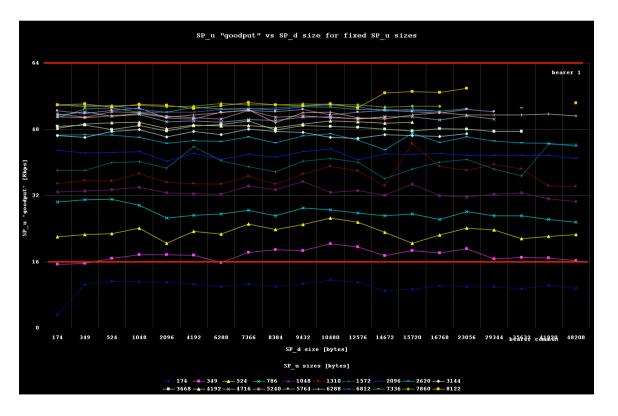
• Capacity switching behavior – uplink




rem.: skipped first 5 observations (startup behaviour)

Copyright (c) Kate Wac & Richard Bults, University of Twente, 2004

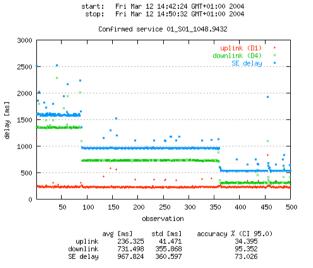
start: Thu Mar 11 14:15:07 GMT+01:00 2004 stop: Thu Mar 11 14:18:10 GMT+01:00 2004


Confirmed service 01\_S01\_786.524

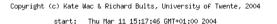


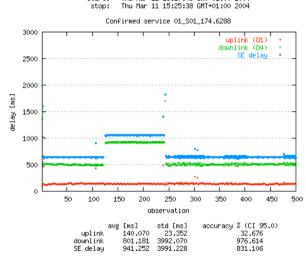
rem.: skipped first 5 observations (startup behaviour)




Influence of downlink behavior on uplink behavior





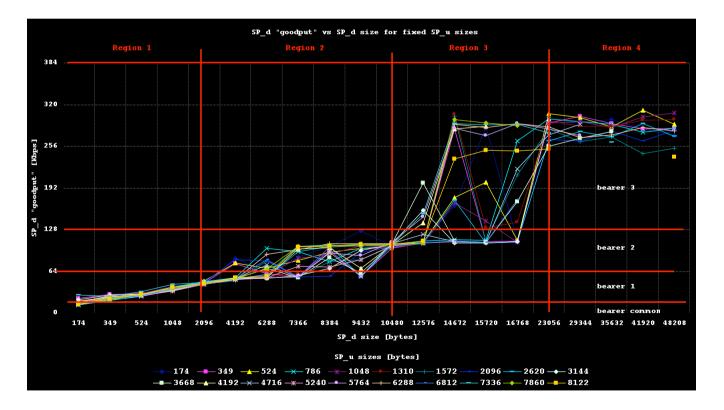


# **Methodology phase 9**

Capacity switching behavior – downlink



Copyright (c) Kate Wac & Richard Bults, University of Twente, 2004






rem.: skipped first 5 observations (startup behaviour)

rem.: skipped first 5 observations (startup behaviour)



Capacity switching behavior - downlink





• Capacity switching behavior - conclusion

|          | Region 1                              | Region 2                                   | Region 3                                | Region 4            |  |
|----------|---------------------------------------|--------------------------------------------|-----------------------------------------|---------------------|--|
| uplink   | data size <= 174 B                    | size <= 174 B data size > 174 B            |                                         | -                   |  |
|          | common bearer                         | dedicated bearer 1                         | -                                       | -                   |  |
| downlink | data size <= 2096 B                   | 2096 < data size <= 10480B                 | 10480 < data size <= 23056B             | data size > 23056 B |  |
|          | common bearer /<br>dedicated bearer 1 | dedicated bearer 1 /<br>dedicated bearer 2 | dedicated bearer 2 / dedicated bearer 3 | dedicated bearer 3  |  |





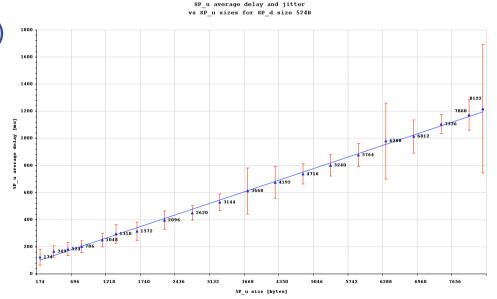
- Goodput influence of workload parameters
- SUT is a 'goodput bottleneck' system independent of workload (i.e. packet size)
- SUT maximum estimated goodput
  - Uplink : ~ 54 Kbps
  - Downlink : ~ 300 Kbps





• Goodput - influence of system parameters

| computer<br>systems                          | nb, pc1    | nb, pc1, pc2 | iPAQ, pc1  | nb, pc1                 |
|----------------------------------------------|------------|------------|------------|------------|------------|--------------|------------|-------------------------|
| intra comm.                                  | USB        | USB        | USB        | Bluetooth  | PCMCIA     | USB          | Bluetooth  | USB                     |
| UMTS<br>terminal                             | Nokia 6650 | Nokia 6650 | Nokia 6650 | Nokia 6650 | PC Card    | Nokia 6650   | Nokia 6650 | Nokia 6650              |
| APN                                          | utwente.nl | utwente.nl | utwente.nl | utwente.nl | utwente.nl | utwente.nl   | utwente.nl | web.<br>vodafone.<br>nl |
| <b>buff. sizes:</b><br>appl.sock<br>[KBytes] | 64.64      | 32.64      | 32.32      | 64.64      | 64.64      | 64.64        | 64.64      | 64.64                   |
| the SoD<br>instance                          | SoD_1      | SoD_2      | SoD_3      | SoD_4      | SoD_5      | SoD_6        | SoD_7      | SoD_8                   |


• Bluetooth is a downlink goodput bottleneck of 83 Kbps

No influence of other system parameters





- Uplink delay = 0.138 \* PDU size + 86 [ms]
- Uplink jitter: varies from 6% to 38%
  - SUT bearer
    - assignment (stat. app.)
  - packet loss in one of the SUT subsystems
  - SUT resource problems







- Scalability characteristics
- Indicative performance measurements
- <u>Expected</u>: delay and goodput per user must not change significantly when the number of concurrent users per (small) geographical location increases
- <u>Observed</u>: significant SUT performance degradation (delay +100%, goodput -50%) per user for 10 concurrent users scenario

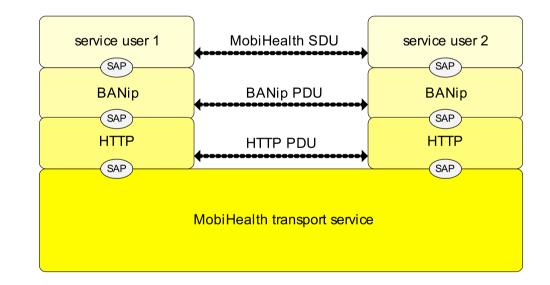




#### Conclusions





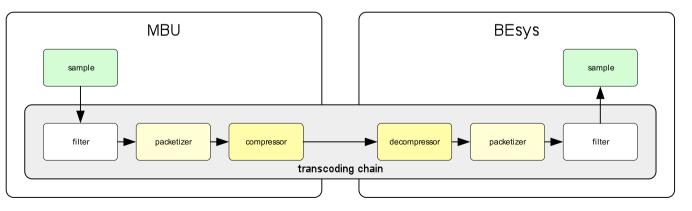

#### **Research question**

- How to derive the best possible quality of service of the selected MobiHealth transport system?
- How to derive it ? Performance evaluation methodology and assessment
- What is the best possible quality of service delivered to the end-user if a MobiHealth transport system consists of V3GNL, Internet and UTnet?





#### **BANip SDU exchange service**





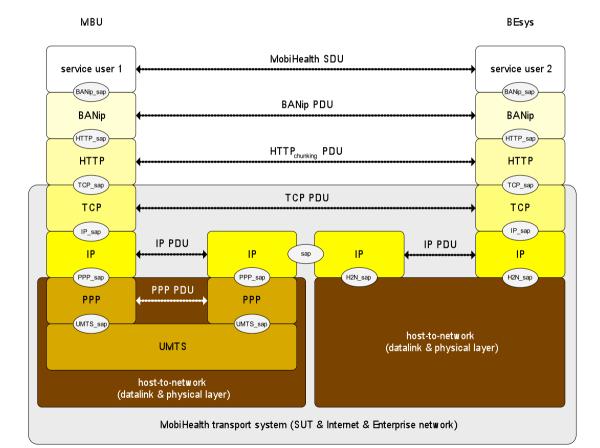



## **MobiHealth SDU**

- MobiHealth SDU assembly is part of the BANip transcoding chain
- Transcoding chain consists of
  - Filter
  - Packetizer
  - Compressor/decompressor





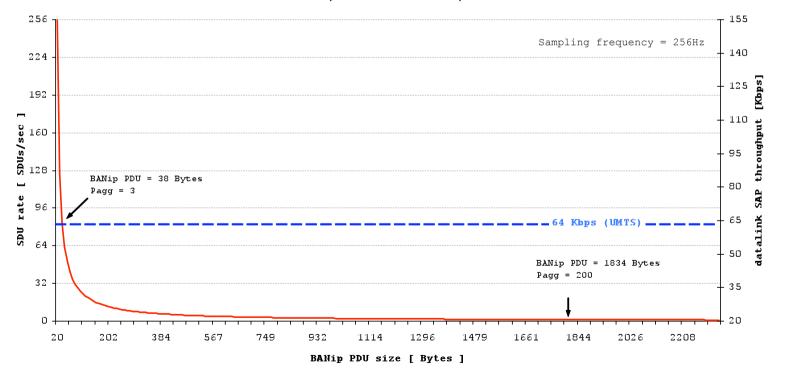

#### **MobiHealth SDU**

- Trauma BAN (Mobi 3e1as)
  - Sampling frequency: 256 Hz
  - Sample size: 19 Bytes
- Transcoding chain
  - Filter: no
  - Packetizer: 1 < Pagg < 255 (MH 200)</p>
  - Compression factor: 52% (for MH 200)
- SDU size = 19 \* Pagg \* 0.48 (MH 1824B)
- SDU rate = Sampling frequency / Pagg (MH 1.3)





#### **BANip protocol stack**




50



# SDU rate and UMTS SAP throughput vs BANip PDU size

SDU rate and datalink SAP throughput vs BANip PDU size (unconfirmed service)





## Conclusion

- Derived Pagg = 3 and SDU rate = 85
- End-user requirements supported:
  - vital sign sample frequency 256 supported, but...
    - aggregation of >= 3 samples
    - individual sample delay >= 105ms
  - no maximum vital sign sample delay specified
    - realtime: every sample send at once (Pagg = 1)→ sample frequency 106Hz
- Current MobiHealth implementation supports:
  - vital sign sample frequency 256 supported, but...
    - aggregation of >= 200 samples
    - individual sample delay >= 1123ms





## Questions & Answers

