

MobiVTag
A First Development

Mattias Grafström

 Université de Genève

Object Systems Group

Professor Dimitri Konstantas, Katarzyna Wac

June 2005

2

Table of Contents

CHAPTER 1 – INTRODUCTION 4

CHAPTER 2 - SCENARIOS 5

2.1 BLIND CROSS-COUNTRY SKIING 5
2.2 VISUALLY-IMPAIRED IN TOWN 8

CHAPTER 3 – REQUIREMENTS AND DESIGN OF THE SYSTEM 11

3.1 SYSTEM REQUIREMENTS 11
3.1.1 PROJECT PRESENTATION 11
3.1.2 FUNCTIONAL AND OPERATIONAL REQUIREMENTS 11
3.1.3 TECHNICAL REQUIREMENTS 12
3.2 SYSTEM DESIGN 13
3.2.1 ACTORS INTERACTING WITH THE SYSTEMS 13
3.2.2 IDENTIFYING THE MESSAGES 13
3.2.3 DYNAMIC COLLABORATION DIAGRAM 13
3.2.4 USE CASE DIAGRAM 14
3.2.5 ACTIVITY DIAGRAM 14
3.2.6 SEQUENCE DIAGRAMS 15
3.3 TAG FORMAT 16
3.4 CLIENT PERSPECTIVE 17
3.4.1 INTRODUCTION - WHAT IS THE PROGRAM ON THE MOBILE DEVICE SUPPOSED TO DO? 17
3.4.2 CREATION OF A TAG 17
3.4.2.1 CHAIN OF EVENTS 17
3.4.2.2 FUNCTIONAL BLOCKS DIAGRAM 18
3.4.2.3 DESCRIPTION OF THE FUNCTIONALITIES USED IN THE TAG CREATION PROCESS 18
3.4.3 REQUEST OF A TAG 19
3.4.3.1 CHAIN OF EVENTS 19
3.4.3.2 FUNCTIONAL BLOCKS DIAGRAM 20
3.4.3.3 DESCRIPTION OF THE FUNCTIONALITIES USED IN THE TAG REQUEST PROCESS 20
3.5 SERVER PERSPECTIVE 21
3.5.1 CHAIN OF EVENTS 22
3.5.1.1 TAG CREATION 22
3.5.1.2 TAG REQUEST 22
3.5.2 FUNCTIONAL BLOCKS DIAGRAM 22
3.5.3 DESCRIPTION OF THE FUNCTIONALITIES USED IN THE SERVER APPLICATION 23

CHAPTER 4 – HARDWARE AND SOFTWARE CONFIGURATION 25

4.1 CHOOSING A MOBILE DEVICE 25
4.2 BUYING THE MOTOROLA A1000 26
4.3 CONNECTIVITY OF THE MOTOROLA A1000 27
4.4 INSTALLING SOFTWARE ON THE MOTOROLA A1000 28

3

4.5 CONFIGURATION OF THE SERVER 28
4.6 IDE ENVIRONMENT 28
4.7 USE OF BLOG 29

CHAPTER 5 – PROGRAMMING A PROTOTYPE 30

5.1 FIRST STEPS IN JAVA 2 MICRO EDITION 30
5.1.1 UNDERSTANDING JAVA 2 MICRO EDITION STRUCTURES 30
5.1.2 A FIRST APPLICATION – HELLODATE 31
5.2 PROGRAMMING THE PROTOTYPE 33
5.2.1 DESIGN PATTERN: MODEL-VIEW 33
5.2.2 FIRST DEVELOPMENT PHASE: CONNECTIVITY 33
5.2.3 SECOND DEVELOPMENT PHASE: TAG CREATION 34
5.2.3.1 CLIENT PERSPECTIVE 34
5.2.3.2 SERVER PERSPECITVE 39
5.2.4 THIRD PHASE: TAG INTERROGATION 40
5.2.4.1 CLIENT PERSPECTIVE 40
5.2.4.2 SERVER PERSPECTIVE 41
5.2.5 CLIENT APPLICATION OVERVIEW 42
5.3 LOCATION API ISSUE 43
5.4 FUTURE DEVELOPMENTS 45

CHAPTER 6 – CONCLUSION 47

BIBLIOGRAPHY 49

APPENDIX

1. TAG FORMAT
2. PHONE COMPARISON CHART - PROGRAMMING CAPABILITIES
3. PHONE COMPARISON CHART - CONNECTIVITY
4. PHONE COMPARISON CHART - GENERAL INFORMATION
5. UML CLASS DIAGRAM - CLIENT APPLICATION
6. UML CLASS DIAGRAM - TAG CREATION ON CLIENT APPLICATION
7. UML CLASS DIAGRAM - TAG REQUEST ON CLIENT APPLICATI
8. UML CLASS DIAGRAM - SERVER APPLICATION
9. DESCRIPTION OF CLAS SES
10. COMMENTED CODE OF THE PROTOTYPE

4

Chapter 1 – Introduction

The MobiVTag project was presented to me by Professor Dimitri
Konstantas. The idea of the project was very appealing. As it was a totally
new idea, it had to start from scratch. As it is explained more in detail the
MobiVTag project proposal, the idea is to use the latest technologies, in
wireless communication and GPS to provide a bi-directional location
based service (LBS) system for a community of visually-impaired and blind
persons. The prospect of working with these technologies and serving a
good cause were very motivating. An action plan for the first steps of the
project was thus put in place.

This document is organized in the following way:

 In chapter 2, detailed scenarios, involving visually-impaired and
blind persons, are explained to demonstrate the potential use of the
system.

We proceed to the requirements and design of the system in
chapter 3. The functional, operational and technical requirements are
defined. The design of the system is presented and both the client and
server perspective are modeled and discussed.

 The hardware and software configuration is described in chapter 4.
The search for an appropriate mobile device is described and this
appeared to be a more difficult task than planned. Further hardware and
software issues are extensively detailed.

 In chapter 5, we explain the building of the first prototype, which
was programmed and tested. An explanation of the programming
procedure and functioning of the application helps to understand how
the prototype works. We also discuss the future developments needed to
further advance in the MobiVTag project.

 Finally in chapter 6 we summarize what we have learned in this
initial study.

 Welcome to the MobiVTag project!

5

Chapter 2 - Scenarios

The two following scenarios will give an idea of how the MobiVTag project
could be used in the future.

2.1 Blind Cross-Country Skiing

Emmanuelle is 21 years old and lives in Fribourg. During her teenage, she
was a promising heptathlon athlete and won several junior Swiss
championships. She really enjoyed practicing her sport and was a training
fanatic. She would never miss a training session unless she was nestled to
her bed with fever over 39 degrees. Her dream was to compete in the
Olympic Games of Athens. With her talent and motivation, she had a
good chance to make her dream come true.

However in the winter of 2001, a tragic event happened in
Emmanuelle's life. She lost her sight during a car accident. After a few
month of depression, Emmanuelle felt she wanted to continue her sports
career. She discovered the possibilities of sports for blind and visually
impaired. Cross-country skiing is one of these activities. As she used to go
cross-country skiing two weeks every year in the Berner Oberland to
prepare herself for the summer season, Emmanuelle was familiar with the
skiing technique.

Cross-country skiing for blind and visually impaired is usually
performed in pairs. The blind person is accompanied by a guide, who
warns about the difficulties and helps in case of problems. Emmanuelle
tried it and enjoyed it very much. Nevertheless, she was dependent on
the availability of the guide. She felt she would like to be able to go out
on this 10km circuit on her own. As she had done the tour a number of
times with a guide, Emmanuelle felt comfortable, gaining familiarity with it.
As this circuit is particularly popular among persons with viewing
disabilities, the MobiVTag system became very useful and has helped
persons with viewing disabilities to cross-country this round without a
guide. Let us illustrate this by describing a usual ski tour for Emmanuelle on
a sunny day.

6

Claire, Emmanuelle's mother, drives Emmanuelle to the ski resort
and helps Emmanuelle with her ski gear. Once she is ready on the track,
Emmanuelle makes sure her mobile device is active and puts her wireless
headset on her ears. She turns the MobiVTag ski application on by using
the key shortcut. As she hears the welcome sound of the application,
Emmanuelle is now assured everything is functioning. Emmanuelle also
had made sure the battery is charged by connecting the mobile device
to the power net the night before.

As it is already 13:30 in the afternoon, other blind users have taken
the route and left their remarks on the MobiVTag system. Therefore
Emmanuelle expects to receive some information about the condition of
the track. Her mobile device makes three distinct sounds to tell her she
has received three pre-race comments. A pre-race comment is a
comment made by a visually-impaired skier, who has already finished the
tour and wants to give his comments and warnings on the current
condition of the track. Emmanuelle chooses to only listen to the last
message so she presses the button on her Bluetooth headset once. The
voice message is from the last blind user to have skied the track. It says
that the track is calm and mostly in good condition, the temperature is
pleasant but it also warns for two warning tags on the track. The first one
mentioned is about a portion of track in a curve, which has been partially
destroyed and where caution is needed. The second tag is about a short
downhill that has become icy and can be risky. After having listened to
this audio tag, the program goes back to the standby position. She
presses the button on the headset once to tell the application she is
starting her trip. This sends a tag with her initial position on the track, which
will later let her know when she has completed the track. She puts her
mobile device in the right pocket of her trousers. She is now ready to
go.

Emmanuelle starts her run. It goes smoothly. The track is fine, as it
was said in the audio comment. After she crosses the woods, she feels a
vibration in her pocket and hears a warning sound in her headset. These
are the recognizable signs of a warning tag. This means she has to be
aware and slow down in the next 50 meters. Emmanuelle has the
possibility to listen to the vocals by pressing the button on her headset but
chooses not to. As she is approaching the curve, she knows it is the tag,
which was mentioned by the pre-race comment. Being careful, she
decreases her speed and feels how the condition of the track is poorer for
a few moments. Once the damaged area is passed a vibration signal is
created by the mobile device and Emmanuelle regains her cruising
speed.

7

As Emmanuelle continues her route, she feels the wind is starting to
blow harder and harder. She can also hear how the branches of trees are
moving. Suddenly, Emmanuelle loses control of one of her skis, because of
a branch that was under her left ski. She doesn't fall but as she moves on
she can feel a lot of branches have fallen on the track. Therefore
Emmanuelle decides to create a warning tag. She pushes the button on
her headset during two seconds and the application understands
Emmanuelle wants to create a tag, but still doesn't know what kind of tag.
The application says: "What type of tag would you like to create?",
Emmanuelle answers: "Warning". The voice recognition module translates
Emmanuelle's voice into a command inside the application. As the
application has been preconfigured to understand Emmanuelle's
commands. The application continues with the collection of the
information and asks: "What is the content of your warning tag?".
Emmanuelle gives her comment: "For a period of 50 meters, the track has
a poorer condition because of branches on the track, please watch out".
Emmanuelle presses the headset button to tell she has finished recording
her message. The application confirms the reception of the message.
However this information is not enough for the program to create an
appropriate tag. The program has a precise position of Emmanuelle, with
help of the GPS integrated to the mobile device and considering the fact
she is an open field, without buildings shadowing her from positioning
satellites. Yet the defective area can't be defined accurately without
Emmanuelle's help. She needs to tell the application when the tag starts.
Hence the program asks Emmanuelle how far back on the track she
wants the tag to start so that the skiers are warned in due time. She gives
an approximate metric (5, 10, 15, etc) reply through her voice, which is
again recognized by the system. The system then calculates the area of
the tag, depending on the direction of Emmanuelle. As this is not a
permanent problem, the tag availability will be given the standard value
and will expire at the end of the day. The tag has now been created and
is then made available to the other users.

Of course all the skiers have different speeds and Emmanuelle as a
top athlete is a fast skier. So she catches up with the skiers who are in front
of her. This is what is happening now. The skier in front of her is also visually
impaired and is thus also equipped with a mobile device using the
MobiVTag system. As the server of the system receives the position of the
skiers nearly instantly, it can calculate their actual speed and therefore
warn them about other skiers getting closer. Emmanuelle receives a
collision warning in her headset and feels specific vibration in her pocket
as the skier in front of her only is only 20 meters away. She thus changes
track to overtake him. Her counterpart skier was also warned but with the
other type of collision warning, as it is a skier coming from behind.

8

Emmanuelle receives the second warning tag, mentioned in the
pre-race comment. She chooses to listen to it by pressing the button on
her headset. It tells her the details about the icy slope in the following
downhill. So she takes it easy and passes the obstacle without problem.
This was the last major hurdle of her tour. She has about 10 minutes left on
the tour so she calls her mother to tell her to pick her up by using the voice
dialing feature on her mobile device and the call button on her headset.
An end of tour signal is sent to her mobile device, when she passes the
point from where she started and sent her initial position. Her tour is
finished. She can decide to leave a pre-tour comment, which can be
used by the fellow users. It is the same type of message she listened to
before she started her tour.

Emmanuelle's tour has enabled us to see some of the different
features applicable to the MobiVTag system. There are other features,
which didn't come out through her trip.

2.2 Visually-Impaired in Town

Jean is 25 years old and lives in Lausanne. He has had serious sight
problems since he was born. At the moment, he is studying economics at
the University of Geneva. Every week day, he takes the train to Geneva
and the tram from the station to the university. Jean is always
accompanied by his guide dog Alfie. Jean has been a user of the
MobiVTag system for a few months now and we will illustrate its usage by
following him during a normal school day.

Jean wakes up and prepares himself to go to university. He takes his
mobile device (an advanced 3G phone with the client application of
MobiVTag installed on it), that has been charging the batteries during the
night and turns it on. A Bluetooth headset connected to the phone is also
part of his equipment. Jean and Alfie are now ready to go. This is a route,
which Jean has taken over a hundred times but new things, changes or
temporary disturbances can always appear due to the dynamics of a
city. As Alfie is leading Jean to the station, Jean comes across a car which
is partially parked on the pavement. As other blind or visually-impaired
might take this path, Jean thinks it would be appropriate to create a tag.
Users with sticks would find a vehicle on the pavement a very disturbing
obstacle. Thus he takes his mobile device and enters the key code for a
minor obstacle. A minor obstacle is one of the templates used in the
MobiVTag system. As a tag has a lot of different values, it would take a lot

9

of time for a user to enter them all. Therefore templates tags, with
standard values for the tag, have been created for the type of
occurrences, which appear frequently. After Jean has pressed the key
code, the mobile device sends the values of the tag to the server. This
includes the position, where Jean is standing, the area of validity of the
tag, an area of 10 meters around the car, the time of validity of the tag,
unlimited in this case, until someone cancels the tag when a user observes
the car has left the pavement. All this information is generated by the
template or automatically by the mobile device, to leave the user with as
little work to do as possible. Alfie and Jean continue their walk to the
station.

Once they have arrived to the station, Jean and Alfie enter the train
in the direction of Geneva. They arrive outside the railway station of
Cornavin. Once outside, Jean receives a coded message on his mobile
device. The phone vibrates twice. This is the signal for an important tag,
which needs audio reception. Thus Jean reaches to his Bluetooth headset
and presses the audio button to listen to the audio recording of this tag.
This tells him, that there are major road constructions around the station as
the station square is being renovated. An alternative itinerary is proposed
to get to the different areas around the station. This is a large area tag,
which is sent to users around a large area around the station and will be
valid until the construction work is finished. Taking the information in
consideration, Jean and Alfie follow this new route, with Alfie helping Jean
to avoid some pole lights.

They arrive to the tram stop and take the tram to the university.
Jean goes to his courses. Today he finishes around 2 in the afternoon. It
leaves him time to meet one of his friends in a café of the old town, where
they usually meet. On the way to the café, Jean receives a signal on his
phone, it vibrates once. This is the code for a minor obstacle. However as
they walk in this area, there is clearly no obstacle. The obstacle has
obviously been moved since the person that created the tag passed in
this area. Thanks to his mobile device, Jean can update the non validity of
the tag by pressing the delete tag key code on his phone. The system is
by the users, creation, amending and deletion of tags are user-based.

As Jean walks up the hill, he can hear noises of construction works
and Alfie leads him to the other side of the road. Jean needs to create a
tag, as this area was not mentioned by a tag. However Jean doesn't
know the size of the area, he leaves this field open in his tag and asks the
system to flag this tag as incomplete. According to the direction in which
Jean was walking, the system can create a temporary target area. If
someone comes from the other direction, the user will be asked to precise

10

the area of the tag. The tags precision will then be more accurate and will
complete Jean's information.

Jean arrives to the café and meets his friend. After spending some
time with his friend, it's time for Jean to go home. He heads with Alfie to
the station. On the road to the station, he receives a warning of a minor
obstacle. He receives the warning a few meters before the obstacle. As
he is a fast walker, the warning is sent to him a bit earlier than to other
users to leave the same amount of time before an obstacle to each user.
This is possible via the system, which calculates the average speed of the
users and warns the users in due time, according to the walking speed.
Jean avoids the obstacle, as Alfie helps him to find his way. Jean presses
the confirm button on his headset to confirm that the tag is still valid.

Jean continues his trip to the station to take his train back to
Lausanne and get home. Jean's tour has provided us with some ideas of
how the MobiVTag can be used during an everyday-life situation of a
visually-impaired person.

11

Chapter 3 – Requirements
and Design of the System

3.1 System Requirements

3.1.1 Project Presentation

This project is an integrating part of the MobiVTag project. Details about
the MobiVTag project can be found in the MobiVTag project proposal.
The idea is to provide a basic infrastructure including software and
hardware, which can be used to further implement the MobiVTag project.

With the help of a mobile phone, which has a GPS receiver
integrated, a MobiVTag user will be able to receive virtual tags containing
information about his actual position in space. The system sends a tag to
the user each time there is a relevant tag available corresponding to the
user's actual position.

Moreover a user will also be able to create tags with information
about his actual position. The system is thus community-friendly as it is the
users, which create the information available in the system. The system is
totally dependent of the users input.

3.1.2 Functional and Operational Requirements

The tag is the key notion in the MobiVTag system. The requirements are
associated to this notion.

? Tag Creation: A user has his mobile device and is walking in the
street. He arrives at a particular place, which he wants to tag. He
takes his mobile device and enters the tag parameters on his
mobile device. The tag is created.

? Tag Reception: A user is walking in the street and arrives in a zone,
which was tagged by a user who previously wandered in this area.
The system sends the tag to the user and it arrives on the user's
mobile device for him to read.

The tag concept is further explained in the tag format specification.

12

3.1.3 Technical Requirements

The system that will be created is a mobile system, using advanced
communication and programming technologies. The system will use the
client/server model. Both 2.5G and 3G mobile technologies are intended
to be used to communicate. When available 3G technology will be used
primarily as the performances obtained by this technology are far more
superior. Thus the mobile devices will use UMTS (3G) when possible and if
needed GPRS (2.5G) to connect to Internet and communicate with the
server.

However as the 3G mobile phones available for the moment in
Switzerland are very limited, the phone had to be imported from Sweden.
The phone that was chosen is the Motorola A1000. It works on Symbian OS
and can run application programmed in Java 2 Micro Edition (J2ME). Thus
the client application on the mobile phones is written in J2ME. It has both
a GPS included and UMTS technology. The choice of the mobile phone
will be more in detail explained in section 4.1.

The server will be connected continuously to the Internet through a
LAN connection to listen to the different requests coming from the client
applications. It will be programmed in Java 2 Standard Edition. The server
will connect to a database system, in which the tags are stored, using
JDBC. The tags will be formatted using XML.

13

3.2 System Design

3.2.1 Actors interacting with the Systems

Let us look at the system as a whole entity or as a black box. What
happens inside the system will be looked into later. Who and what will be
interacting with the MobiVTag system? As we have been able to see in
the definition of requirements, the key actors are the so-called "mobile
users", who interact with the system. With the help of their mobile phone,
they can create tags in the system and should receive tags from the
system according to their position.

3.2.2 Identifying the Messages

The messages sent in between the systems and the actors are as follows:

? The MobiVTag system sends a message, shaped as a tag, to a
mobile user when this mobile user reaches a position, which
corresponds to a tag1.

? The MobiVTag system receives a message from a mobile user when
this mobile user has decided to create a tag by using his mobile
device.

3.2.3 Dynamic Collaboration Diagram

From the information collected above we can create the corresponding
dynamic collaboration diagram:

1 To implement this, requests are sent on a regular basis from the client
application to the server application of the system without the interaction
of the user. This will be explained more in detail in section 3.4.

14

The number of mobile users interacting with the system can vary from 0 to
an undefined limit.

3.2.4 Use Case Diagram

From the user point of view, this gives the following use case diagram:

3.2.5 Activity Diagram

Accordingly, this activity diagram presents the lifecycle of the client
application:

15

3.2.6 Sequence Diagrams
The following two sequence diagrams show the interactions between the
user and the system’s two components, the client application and the
server application. The first one presents the tag creation procedure:

16

The second one presents the tag request procedure:

3.3 Tag Format

The tag is the key concept in this system. Therefore it is essential to look at
it more in detail, to enable modeling the system. The format of the tag
expresses which parameters will be included in a tag. This helps us to see

17

what kind of information is needed for a tag. From there, we can start to
look at where we should find this information and which communication
channels are to be used. It is the starting point for the building of the
system.

The table describing the tag format and its different areas can be
found in Appendix 1.

3.4 Client Perspective

3.4.1 Introduction - What is the program on the mobile device
supposed to do?

? Communicate with GPS receiver to receive location information

? Send location information about the position regularly to server to
search for possible tags

? Receive tags from server based on location

? Create tag with location information when requested by the user

? Send tag to server

? Have a simple graphical user interface

3.4.2 Creation of a Tag

3.4.2.1 Chain of Events

1. User presses button "creat e tag"

2. Program searches for location information through GPS receiver

3. Tag is created according to the users input

4. Communication channel is created to the server

5. Tag is sent to server

6. Confirmation of reception is received

7. Communication channel to the server is closed

18

3.4.2.2 Functional Blocks Diagram

This diagram shows the functions, which will be used in the tag creation
process and the communication flow internal and external of the client
application.

3.4.2.3 Description of the functionalities used in the tag creation
process

? GPS Function

o Requests and receives location information from GPS RECEIVER

o Sends location information to TAG CREATOR and TAG REQUESTER

? GUI Function

o Interacts with user through MOBILE PHONE SCREEN

o Sends information to TAG CREATOR when user has asked to
create a tag

19

o Receives information from TAG RECEIVER when tag is received
and publishes it

? NETWORK OUT Function

o Sends tags and tag interrogation requests to SERVER

o Discovers the services available and communicates with the
SERVER

? TAG CREATOR Function

o Communicates with GUI and receive user input

o Requests and receives location information from GPS

o Requests and receives time information from TIME

o Creates tag

o Sends tag to NETWORK OUT

? TIME Function

o Requests and receives date and time information from SYSTEM

o Sends date and time information to TAG CREATOR

3.4.3 Request of a Tag

3.4.3.1 Chain of Events

1. As the user is moving, the client application detects a significant
position change while questioning the GPS receiver

2. A tag request is created with the new location information

3. A communication channel is created to the server

4. The client application sends the tag request

5. The server sends a reply with either a tag or a negative answer

6. Communication channel to the server is closed

7. If a tag has been received, the client application sends a message to
the user via the mobile device

8. The user chooses to view the tag

9. The tag is presented to the user

20

3.4.3.2 Functional Blocks Diagram

This diagram shows the functions, which will be used in the tag request
process and the communication flow internal and external of the client
application

3.4.3.3 Description of the functionalities used in the tag request
process

? GPS Function

o Requests and receives location information from GPS

21

RECEIVER

o Sends location information to TAG CREATOR and TAG
REQUESTER

? GUI Function

o Interacts with user through MOBILE PHONE SCREEN

o Sends information to TAG CREATOR when user has asked to
create a tag

o Receives information from TAG RECEIVER when tag is received
and publishes it

? NETWORK IN Function

o Receives results on tag interrogation request from SERVER

o Sends results on tag interrogation request to TAG REQUESTER

o Receives tags from SERVER

o Sends tags to TAG REQUESTER

? NETWORK OUT Function

o Sends tags and tag interrogation requests to SERVER

o Discovers the services available and communicates with the
SERVER

? TAG RECEIVER Function

o Receives tags from TAG REQUESTER

o Communicates with GUI

o Sends tag information to GUI

? TAG REQUESTER Function

o Requests and receives location information from GPS

o Determinates when to make a tag interrogation request
depending on position change or time

o Creates tag interrogation request

o Sends tag interrogation request to NETWORK OUT

o Waits for answer on interrogation request from NETWORK IN

o If a tag is available it sends the tag to TAG RECEIVER

3.5 Server Perspective

22

3.5.1 Chain of Events

3.5.1.1 Tag Creation

1. The server is listening to the network

2. The server receives a request

3. A communication channel with the client is created

4. The request is received

5. The server application determines that this is a tag creation request

6. The server sends the tag information to the tag database where the
tag is created

7. The servers sends a tag creation confirmation to the client

8. The communication channel with the client is closed

3.5.1.2 Tag Request

1. The server is listening to the network

2. The server receives a request

3. A communication channel with the client is created

4. The request is received

5. The server application determines that this is a tag interrogation
request

6. The server interrogates the tag database to see if a tag is available for
the location sent by the client

7. The server sends the tags available for the client's position or a
negative reply

8. The communication channel with the client is closed

3.5.2 Functional Blocks Diagram

This diagram shows the functions, which will be used in the tag creation
process or the tag interrogation request and the communication flow
internal and external of the server application

23

3.5.3 Description of the functionalities used in the server application

? NETWORK IN (Listener) Function

o Listens to the network for tag interrogation requests or tag
installations

o Forwards tag interrogation requests and tag installations to

24

REQUEST DECIDER

o Discovers the clients and their availability and communicates
with CLIENT

? NETWORK OUT Function

o Receives tag installation confirmation from TAG INSTALLOR

o Sends tag installation confirmation to CLIENT

o Receives tag interrogation request reply from TAG
INTERROGATION

o Forwards tag interrogation request reply and if available tag to
CLIENT

? REQUEST DECIDER Function

o Receives tag interrogation requests and tag installation from
NETWORK IN

o Forwards tag installations to TAG INSTALLOR

o Forwards tag interrogation requests to TAG INTERROGATION

o Implements a security policy

? TAG INSTALLOR Function

o Receives tag installation request from REQUEST DECIDER

o Creates tag in TAG DB

o Sends tag installation confirmation to NETWORK OUT

? TAG INTERROGATION Function

o Receives tag interrogation request from REQUEST DECIDER

o Forwards tag interrogation request to TAG SEARCHER

o Receives reply from TAG SEARCHER

o Sends reply and if available tag to NETWORK OUT

? TAG SEARCHER Function

o Receives tag interrogation request from TAG INTERROGATION

o Searches Tag DB according to TAG INTERROGATION

o Sends reply and if available tag to TAG INTERROGATION

25

Chapter 4 – Hardware
and Software Configuration

4.1 Choosing a Mobile Device

The first task was to find a mobile device, which suited the needs for the
project. In recent years a jungle of mobile phones and PDA’s has come
out on the market and thus it was a necessity to define our needs very
precisely. We quickly found out that the three key features for our project
are:

? Connectivity: Ability to connect to the internet, through at least
GPRS and preferably UMTS

? Programmability: This device should be programmable

? GPS: This device should have a GPS integrated or should have
the possibility to have an external GPS connected to it

We decided to look in a worldwide context, and investigate all the known
mobile phone brands. We used the internet to explore the over 30 mobile
phone brands and found everything from regular mobile phones, smart
phones, and advanced PDA’s. However only very few had an integrated
GPS module. As 3G telephones are in early development, only innovative
brands had those devices in their product range.

In Appendix 2, 3 and 4, you can find comparative charts, between
the different phones, which were considered. The phone that attracted
our attention was the Motorola A1000. It is a 3G phone, able to connect
on the GPRS and UMTS networks. As it uses Symbian OS, it is both
programmable in Java 2 Micro Edition and C++. It also has a GPS module
integrated. It became a clear choice, as this device really offers all the
aspects we were looking for.

A backup plan was also created in case the A1000 was impossible
to buy. A Sony Ericsson P910, also using Symbian OS and programmable in
Java 2 Micro Edition, was considered, adding an external GPS module
connecting through Bluetooth. As the later device isn’t a 3G telephone, it
wasn’t appropriate for our project and would only be used if no other
solutions could be found. Subsequently, we concentrated our efforts on
the acquisition of the Motorola A1000.

26

 Motorola A1000

4.2 Buying the Motorola A1000

Motorola may be a worldwide company. It doesn’t mean it is possible to
buy all of their mobile phones at any places of the world. The Motorola
A1000 doesn’t exist in Switzerland yet, although Switzerland already has a
functioning UMTS network. Motorola with Swisscom choose for a start only
to commercialize a relatively old and not particularly advanced device
on the Swiss market. However the A1000 is available, where 3, an
international 3G mobile network operator, is present, thus in Sweden, Italy,
Austria and the United Kingdom.

An e-mail conversation with Motorola Switzerland suggested the
phone would arrive in February on the Swiss market. We are in June now
and the A1000 has made its appearance on the Swiss Motorola website
but the phone is still not available in any Swiss shops. We made the good
decision not waiting for the Swiss launch of the phone and in stead
investigated how to buy the phone abroad.

27

E-mail conversations with 3 in Sweden suggested it would not be
possible to buy the phone unless the person buying the phone is officially
living in Sweden. As we have relations in Sweden, we contacted a trusted
person and asked him to buy the phone for us. A money transfer was
made to a Swedish bank and the phone was bought in a shop in Uppsala.
The phone was bought for use with a prepaid card, without a subscription.
The buy of a welcome package was mandatory. Although there wasn’t
any subscription involved, the phone was still blocked to the 3 network.
This means that if you don’t put a SIM card from 3, the phone will not work.
We decided to send the phone to a company, specialized in unblocking
phones. The person in Sweden took care of this and the phone came
back five days later. The unblocked A1000 was then sent by Swedish post
to Switzerland and received in the mailbox three days later, having
survived the trip across Europe.

4.3 Connectivity of the Motorola A1000

An Orange SIM card was put in the phone to test it and the phone was
working with this card. It had thus been successfully unblocked. The next
step was to subscribe to a Swiss mobile provider. As Swisscom at that time
was the only operator offering an access to the UMTS network, the choice
was not too difficult. The only choice remaining was the type of
subscription. A short market study gave us the answer. Swisscom offer a
data only subscription called “Natel Data Basic”, enabling connections
through all the different networks, including GPRS and UMTS. As there are
no particular needs for phoning with the mobile device, this offer was
chosen and a subscription was signed.

 However this didn’t mean that the phone would connect instantly
to the internet. The GPRS settings of the phone were still set to the 3
network. Automatically the phone tried to connect using the default 3
network settings. It was stated nowhere how to change them. They
appeared to be blocked to 3. Luckily a free application called
DefaultGPRSEditor was found on the web2, giving the possibility to change
these settings. The settings for the Swisscom GPRS network were found on
their website and entered into the DefaultGPRSEditor application on the
A1000.

Finally, the A1000 was thus able to connect to the internet in
Switzerland and this against the wishes of the 3 network and Motorola. It

2 DefaultGPRSEditor is available at http://nop.at/dge/

28

uses the UMTS network when available and switches to the GPRS network
in other cases.

4.4 Installing Software on the Motorola A1000

To install applications on the Motorola A1000, we had to first install the
Motorola Desktop Suite available on Motorola’s developer website
www.motocoder.com. After pairing the A1000 with a regular PC, we used
the Bluetooth connection to connect the two. The Desktop Suite then
enables the installation of applications on the A1000 from the PC.

4.5 Configuration of the Server

We chose to use an Apache Tomcat 4.1 Server, which was installed on a
home PC running Windows XP. The server was configured to listen to port
8071. The server is connected to a TV-cable internet connection, passing
through a router. The router is configured so that requests on port 8071 are
forwarded to the PC hosting the server. The PC is online and connected
permanently.

4.6 IDE Environment

jEdit 4.2, a free java editor, was used when coding. The J2ME Wireless
toolkit, provided by Sun Microsystems, was used to compile, debug and
package the client application, before installing it on the A1000 through
the Motorola Desktop Suite. The Motorola SDK provided on the
motocoder website was not used as it didn’t offer access to the needed
API’s. This will be explained more in detail in section 5.3.

29

4.7 Use of Blog

A blog, powered by WordPress, was created to provide details of the
advancement of the project. The key documents were published there.
Comments could be made directly on the site to enhance
communication around the project. The blog was revamped after the
arrival of the mobile phone with the latest WordPress version. The address
of the blog is: http://mobile.esquive.org

30

Chapter 5 – Programming a Prototype

5.1 First steps in Java 2 Micro Edition

5.1.1 Understanding Java 2 Micro Edition structures

Having never programmed with Java 2 Micro Edition (J2ME), it was a
challenge to get acquainted with this technology. The first task was thus
to read as much documentation as possible about it and get familiar with
the basics. Of course as it is part of the Java family and as I already was
familiar with Java 2 Standard Edition (J2SE), it was not totally unknown
territory. Still it was still important to have a full overview of this specific
language to understand how to use it and what its capabilities are.

 J2ME is in fact the smaller brother of J2SE and the server-based J2EE.
The main difference is that they target different types of devices. J2ME
provides a development environment for a range of small, constrained
and mobile devices. These devices can be characterized by limited
capabilities, i.e. smaller computing and memory capacities. They include
for example mobile phones and PDA’s. There are many similarities though
between J2ME and J2SE, as J2ME has been derived from J2SE. It thus also
shows all the characteristics of the Java language (portability, use of
libraries, etc)

 There are different types of devices, which have limited capabilities
and thus J2ME has been divided in two configurations:

- Connected Device Configuration (CDC) for devices with more
memory, faster processors and greater network bandwidth, as for
example navigation and telemetry systems.

- Connected Limited Device Configuration (CLDC) for devices
with intermittent network connections, small processors and limited
memory, as for example pagers, mobile phones, PDA’s and smart phones.

Moreover, J2ME has been divided in different profiles. A pager clearly
doesn’t offer the same possibilities as a mobile phone, though both have

31

limited network connectivity and memory. This is where the profiles are
relevant. Whereas CDC and CLDC provide the lowest common
denominator for a group of devices, profiles add a layer on top of the
configuration providing API’s for a specific class of device. One of them is
the Mobile Information Device Profile (MIDP). MIDP offers the core
functionality required by mobile application, such as the user interface,
network connectivity, local data storage and notably, application
lifecycle management.

 It became quite clear in which direction we were to continue. The
mobile phones that exist at the moment only enable the use of the CLDC
configuration with help of the MIDP profile. We were therefore bound to
this technology. Rightly so as MIDP provides us with the tools we need to
create our desired application. In order to understand the subtleties of
MIDP programming, we started by creating a first application called
“HelloDate”, which we will describe in the next section.

5.1.2 A first application – HelloDate

The idea with this application was to create a simple program that shows
the date on the screen of the mobile phone. It also helped testing the IDE,
the connection between PC and mobile phone, as well as the installation
of a newly created midlet.

A midlet is a J2ME application that executes on CLDC under MIDP. All
java applications on current mobile phones are midlets and follow
therefore specific rules. A midlet application must extend the MIDlet class,
which can be found in the javax.microedition.midlet package. The
application is managed by the Application Manager Software (AMS). The
AMS is a part of the device’s operating environment and guides the
midlet through its various states during the execution process. Unlike a
J2SE program, midlets don’t have a public static void main()
method. A midlet follows a certain lifecycle. It can either be “paused”,
releasing shared resources and becoming passive, “active”, acquiring
required resources and setting the current display, or “destroyed”,
releasing all resources. One method for each state (pauseApp(),
startApp(), destroyApp()) has been defined and can be called by
the AMS to indicate to the midlet that it should enter that certain state.
When writing the HelloDate midlet, we thus had to use the structure
presented above. The code, that was written to present the date, was as
a result put in the startApp() method and was run when the application
was started. The second key feature in J2ME, which was used creating this
program, was the user interface (UI) in the LCDUI model. A Form object
was used to enter the text on the screen. The display class, which acts as

32

the display manager for the midlet, was used to set the display to the
Form with the Display.setCurrent(Displayable) method.

 The creation of this basic application helped getting an overview of
how to use J2ME. The next phase was to start focusing on the prototype of
the MobiVTag project and as a first step we created a simple midlet using
a network connection between the phone and the server. The sample
code of the application is available below.

33

5.2 Programming the prototype

5.2.1 Design Pattern: Model-View

We have chosen to use the model-view design pattern3 for the client
application of our prototype. It is a simplified version of the Model-View-
Controller design pattern. The classes of the program are divided in two
component groups:

- Model, which manages the application’s data. It responds to
queries from the views regarding its state when requested to do
so by the views. It also notifies the views when the state of the
data has changed

- View, which presents a view of the model data. It responds to
user input, instructing the model to update its data accordingly.
On notification of changes to the model data, it retrieves the
new model state and renders a view of the latest state of the
data.

It is essential to separate the UI from the core application login. This
architecture enables portability and ensures flexibility in the programming.
We will study more closely the class architecture and the division of the
classes in these two component groups in section 5.2.3 and 5.2.4.

Furthermore, as seen in Chapter 3, the system will also follow the
classic client – server architecture. We will have one server, listening for
requests from clients and responding accordingly.

5.2.2 First Development Phase: Connectivity

The idea with this first prototype was to create a simple communication
link between a client and the server. On the screen of the mobile device,
the user could enter a few characters in two different text fields, name
and position. The characters entered in each field were then passed as
parameters at the end of the URL of the server. This URL was used in a GET
request method, which was the method employed to send the data to
the server.

The server was constructed as a servlet, listening for get requests. It
read the parameters and sent a reply with a confirmation message and

3 Available online at: http://doc.trolltech.com/4.0/model-view-
programming.html Trolltech, 2005.

34

the content of the parameters. The reply of the server was then read by
the client and shown on the screen of the phone.

This ensured that the communication infrastructures were
functioning well. The GPRS and UMTS network available on the phone
were responsive and the server was reachable through the internet.

5.2.3 Second Development Phase: Tag Creation

5.2.3.1 Client Perspective

Creating a tag is one of the essential parts of the application. The user
should have the possibility to create tags with his mobile device. As we
had defined the tag format and its different parameters earlier, we had to
visualize how this tag creation procedure would be on the prototype. As it
is difficult to implement all the ideas around the project directly, we
subsequently chose to limit the choices of the user.

The tags created with our prototype will only convey text. Some of
the parameters will be given default values and be invisible to the user.
The user will be able to:

- Enter a text, which will become the content of the tag.

- Choose a date and time of creation of the tag. The actual date
and time of the system are the default value.

- Enter a certain amount of hours of validity, until the tag expires.

- Choose an area of validity of the tag, around the actual
position. The area is defined as a quadratic box around the
position. The size of the half side of the box can be chosen as 10,
25 and 50 meters.

- Note that the shape of the tag is set to box shape.

The box shape was chosen for convenience. Calculating the relevant
positions for the case of a circular tag area would need more complex
geometrical calculations. These steps will be undertaken in the future.

In the following screenshot you can see the user interface for the
tag creation:

35

To create this user interface, we created a class called
TagCreationForm. It extends the Form class and contains the methods,
which will return the different parameters used to create a tag. It also
reads the user input for the parameters available on the UI. The other
parameters are hidden to the user and have default values, except for
the location parameter. The location parameter was a problematic issue,
which we will explain more in detail in section 5.3. The consequence of this
complication was that it was impossible to receive any information about
the position from the phone. Hence to make our prototype realistic, we
decided to use a number of chosen positions generated randomly.

 In order to do that, we first needed to understand how global
positioning system works. How is the position measured? Which units are
used? A position is made out of two variables: the latitude and the
longitude. They give the coordinates on a map. Latit udes and longitudes
have the same unit. They are measured with angles from the earth’s
center to locations on the earth’s surface. Latitude measures angles in a
north-south direction. Longitude measures angles in the east -west
direction. For example, the Hotel des Bergues in Geneva has the following
coordinates:

- Latitude: 46° degrees 21’ arc minutes 14’’ arc seconds – North

- Longitude: 6° degrees 14’ arc minutes 71’’ arc seconds – East

Degrees, arc minutes and arc seconds are all units to measure latitudes
and longitudes. 1 degree is 60 arc minutes. 1 arc minute is 60 arc seconds.
1 degree is thus 3600 arc seconds. As the method provided by Motorola
to get a location from the mobile phone uses (arc minutes.105) as a unit,

36

we decided to do the same. This will facilitate the transition once the API
has been made available.

 Having understood how the positioning coordinates function, we
started to create a method to generate random positions. To remain
realistic, we decided to use positions in the Geneva region. After some
searching, we found the position for six well-known Geneva hotels. These
positions were of course in the standard format so we had to convert
them to the Motorola format. Next, you can see an example of a
conversion for the Hotel des Bergues and a table with the hotels and their
respective positions:

 Lat. 46°21’14’’ = (46*60 ? 21?
14
60

)*100000 = 278068000 arcmin.105

Hotel Name Position in Degrees Position in arcmin.105

Angleterre 46°20’96’’ - 6°15’08’’ 278096000 - 37508000

Bergues 46°20’68’’ - 6°14’71’’ 278068000 - 37471000

Edelweiss 46°21’14’’ - 6°14’98’’ 278114000 - 37498000

Les Nations 46°21’53’’ - 6°13’29’’ 278153000 - 37329000

Mon Repos 46°22’17’’ - 6’14’95’’ 278217000 - 37495000

Western Diplomate 46°20’03’’ - 6’15’98’’ 278003000 - 37598000

We created two methods4 called getLatitude() and getLongitude().
The latitudes and longitudes seen above were stored in an array in their
respective method. When the getLatitude() method is called, it first
generates a random number between 0 and 5. Then the method returns
the latitude corresponding to the random number’s position in the array.
The getLongitude() method returns the longitude corresponding to the
same position, as the latitude and longitude we used are pairs.

 As tags are not only valid at a single location but over an area, we
needed to look at the area of validity of the tag. As we chose to use the
box shape, these calculations became easier. Once we have generated
the position coordinates, we need to calculate the minimum and
maximum latitudes and longitudes. The chart below shows how the area
of validity is delimited by those boundary points:

4 We have used the same method names and declarations as Motorola
uses in its location API to limit the number of changes to be made once
the location API is available. (see section 5.3)

37

As latitudes and longitudes are calculated in arc minutes, we needed to
find a relation between meters and arc minutes to enable us calculate
the coordinates of these determinant points. We decided to neglect the
fact that the earth is a sphere and approximate our results:

1km ˜ 30 arcsec

? ?2km ˜ 1 arcmin

? ?2000m?̃ 1 arcmin

? ?1m?̃ 0.0005 arcmin

? ?1m?̃ 50 arcmin.105

We now have an approximation of one meter in arcmin.105 and can
calculate the boundaries of the area of validity. When the user creates his
tag, he chooses a radius of validity in meters. The application reads his
input. In the calcLatitude() and calcLongitude() methods, we use
the randomly generated location details and that input to calculate the
minimum and maximum latitude and longitude of validity:

Minimum Latitude = Latitude – Radius * 50

Maximum Latitude = Latitude + Radius * 50

Minimum Longitude = Longitude – Radius * 50

Maximum Longitude = Longitude + Radius * 50

The two methods associate the minimum and maximum latitude and the
minimum and maximum longitude to their respective variables.

On the next page, you can see an overview of the tag format table
adapted to our prototype, which shows how the values of the parameters
are collected.

38

Parameter Value

tagid Created by the server

imei5 Default value: 35491100041572

group Default value: standard

minlatitude Calculated according to random latitude and radius chosen by user

maxlatitude Calculated according to random latitude and radius chosen by user

minlongitude Calculated according to random longitude and radius chosen by user

maxlongitude Calculated according to random longitude and radius chosen by user

shape Default value: Box (Visible to user)

radius Choice for user on the UI between 10, 25 and 50 meters

activation Default value: reception

date Chosen by user on Date Field in the UI

validity Chosen by user in Numeric Text Field in the UI

priority Default value: 1

comment Default value: comment

media Default value: text

content Chosen by user in Text Field in the UI

In the main midlet MobiVTag class, we have created a createTag
method, which compiles the different parameters in one StringBuffer.
The parameters are passed in this format:

(name of the parameter)=(value of the parameter)

The parameters are separated by a carriage return, which helps the
server reading the data in a line-by-line stream. createTag also uses the
networking methods we have created to send the tag. We will look at
those methods in the next paragraph.

As there is a lot of information contained in one tag, the parameter
method used during our connectivity test earlier on wasn’t appropriate.
For example, if in the tag content the user entered a space, the server
would have problems reading the content. We thus needed to create a

5 IMEI (International Mobile Equipment Identity) is a unique 15-digit code
used to identify an individual GSM mobile station to a GSM network. We
use it as a unique identifier.

39

new method of sending information to the server. In the Tag class, we
created the sendHttpPostRequest method connecting with the server
during the tag creation procedure. The generic connection framework is
still used. However this time we used a POST request to the remote server.
We first of all open the connection and send the headers, which tell the
server what kind of communication to expect. We open an
OutputStream in which we send the tag data contained in the
StringBuffer mentioned earlier. If the connection has been successful,
the client should receive an HttpConnection.HTTP_OK when calling the
getResponseCode method. Next, an InputStream is opened to read the
response of the server, which is passed to the calling method.

The sendTag method calls the sendHttpPostRequest by passing
the server address and the tag content. It is itself called by the CreateTag
method.

To summarize the tag creation procedure:
At first, the tagCreationForm and tag classes are instantiated. The UI is
shown on the screen of the mobile device. The user enters the requested
parameters and presses the “Send” button. Once the send button is
pushed, the information entered on the screen is passed, together with
the other parameters to the CreateTag method. This method compiles
the parameters into a StringBuffer and calls the sendTag method,
which uses the sendHttpPostRequest to send the data. The response of
the server is read and passed to a String variable that is used later to
show the response of the server to the user.

5.2.3.2 Server Perspecitve

On the server side, we have created a doPost method, which is listening
to POST requests from clients. It is responsible for receiving the data from
the midlet and storing it. The tag data are stored as Tag objects in an
ArrayList. A tag object is defined by its different parameters. When a
request is received, we are not using the regular method accessing the
parameters using the getParameter method, as the data is sent a block
and is read by an input stream. Instead we created an own
getParameter method to fulfill our needs. The application reads the
BufferedReader line by line and splits the parameter and the value. It
then stores the values in a Hashtable corresponding the values and the
parameters. The tagid parameter is incremented to give the tag a
unique identification. The addTag method is then called to permanently
create the tag in the ArrayList with the values for each parameter.
Once this has been done, the server sends a reply to confirm the creation

40

of the tag, including a confirmation message, the tagid and the content
of the tag.

5.2.4 Third Phase: Tag Interrogation

5.2.4.1 Client Perspective

Apart from creating tags, the mobile device should also be able to
interrogate the server concerning available tags at the user’s current
position. We thus created a standard display, which shows if there are
available tags at the current position. In the future, a part of the
application should optimize the tag request procedure, depending on the
speed of the user, and only interrogate the server when this optimization
algorithm deems it necessary. For the moment, we simply use a timer
which refreshes the screen every 90 seconds.

 First of all, we created a RequestForm class, which handles the user
interface of the interrogation phase. It also is the standby view of the
application. It shows the currently generated position, as we don’t have
access to the real location. In addition it presents if there are currently
available tags. If there are, it shows the priority, the tag-id as well as the
content of the tag. On this view, we also receive the confirmation of the
tag creation procedure received from the server, if a tag creation request
has been made previously. Here follows a screenshot illustrating a regular
interrogation view, without the tag creation procedure confirmation:

In this class, we have only the information relative to the UI. As we have
two versions of the class, we have created two constructors, which have

41

different parameters lists. When we want to post the reply from the server
after a tag creation, the response of the server is additionally passed as a
parameter and added to the RequestForm. The other parameters, which
are present in both cases, are the title of RequestForm, the result of the
interrogation procedure and the current details of the position.

 In the Request class, we have defined the GET method
sendHttpGetRequest, which is used to connect to the server and
interrogate it. It’s a standard GET request as we used in our first
connectivity example. The SendRequest method uses
sendHttpGetRequest by handling the URL of the server and the
parameters of the GET request, the current latitude and longitude. The
latter are generated as in the tag creation procedure. They are at the
same time passed to the RequestForm to be shown on the screen when
the reply of the server has been received. The GET method returns the
reply of the server and is also passed on to the RequestForm through the
SendRequest method.

 In the MobiVTag class, main class of the program, a timer is used to
create a new RequestForm every 90 seconds. When it is created, a new
Request object is thus also instantiated and the server is consequently
interrogated too. The results are accordingly refreshed on the screen of
the mobile device.

5.2.4.2 Server Perspective

On the server side, we created a doGet method, listening for GET requests
from clients. When a request is received, the server reads the parameters
and parses them into integers. Those integers are passed to the getTags
method. In this method, the latitude and longitude will be compared to
the minimum and maximum latitudes and longitudes available in the
ArrayList. The tags are sorted by priority and by tag id. With the help of
an Iterator, the tags are searched one by one. If the latitude is
comprised in between the minimum and maximum latitude and the
longitude is comprised in between the minimum and maximum latitude of
the same tag, the Priority, Tag-ID and content values of this tag are put
into a StringBuffer. If more tags are relevant, they are separated by a
carriage return. If no tags are valid, a StringBuffer with “No tags
available” is created.

 This StringBuffer is then passed to the doGet method, which
uses it in the reply to the client’s request. This reply is sent through an
output stream.

42

5.2.5 Client Application Overview

We have now seen the different parts of the client application. We still
need to get an overview and see how everything interacts.

 The main part of the client application is the MobiVTag class. This is
the class, which directs the operations. When the application is launched,
the startApp method is called. In this method, the Timer of 90 seconds is
launched and the TimerTask request is started. This task asks to put the
display to the RequestForm. In order to do that, a new Request object is
instantiated as well as a new RequestForm. Thus a position is generated, a
tag interrogation is sent to the server and the reply is received by the
client and shown on the screen.

 If the user doesn’t use the buttons available, the Request display will
simply be renewed every 90 seconds. If the user presses the “Create Tag”
button, a new TagCreationForm will be instantiated and the display will
be changed to the TagCreationForm. Once the user has filled in the
information on the display. He can either press the “Send” button or the
“Back button”. If he presses the “Back” button, he will cancel his tag
creation procedure and simply return to a new RequestForm. If he clicks,
the “Send” button, a new Tag object will be instantiated according to his
wishes and send to the server. The reply from the server, with the tag
creation confirmation message will be received and added to new
RequestForm. It will be shown until the Request display is refreshed
automatically. The user can at any time press the “Exit” button to quit the
application.

 The lifecycle of the display object can be seen in this UML state
chart, the actions changing the state are either the user pressing the
respective button or the tag creation timing out (Time Out):

43

A UML class diagram of the client application is available in Appendix 5.
Appendix 6 and 7 respectively cover the classes used in the tag creation
process and in the tag request process of the client application. Appendix
8 shows the classes used by the server application. Appendix 9 shortly
presents each class and its purpose. More detailed comments about the
programming can also be found in the commented code, in Appendix
10.

5.3 Location API issue

As explained shortly earlier, there were a lot of difficulties getting access
to the incorporated GPS in the phone. When we started programming our
prototype, we wanted to test the GPS. On the developer guide for the
Motorola A1000, provided on Motorola’s developer website
www.motocoder.com, the chapter 10 explains extensively the use of the
Location API. All the methods are clearly stated and their possible
utilizations. The guide states how the Location API “consists of the Java
package com.motorola.location, which implements location client
functionality and of operations for establishing connections to the GPS
driver.”6

 So we decided to install the Beta SDK for the Motorola A1000,
available on the same website. However, when one tries to use the
package, error messages are received. Consequently, we read the User
Guide for this SDK. In section 3, Motorola API’s, which describes7, “the
various Motorola API’s supported in the Motorola handset supported by
the SDK”, we do not find the Location API. Clearly this SDK doesn’t support
the use of the Location API.

 When searching the web for answers, we came across persons on
forums, with the same problems. Here follows an example of these
testimonials: “Anyone knows where to find the fully licensed java SDK for
Motorola phones? The one that is available for download from
motocoder.com doesn't contain the location classes so it's impossible to
acquire information from the agps-receiver in the phone.”8

 We decide to further investigate the question with Motorola. On
their motocoder website, Motorola offer a 24/7 tech support. We state a
clear question, explaining our project and receive the following answer:

6 Page 32, Developer Guide Motorola A1000
7 Page 7, Motorola SDK A1000
8 Svante Johnson, 14.02.2005, Online resource available at:
http://www.3g.co.uk/3GForum/archive/index.php/t -15809.html

44

“Only developers with a business relationship with Motorola can access
closed (or licensee only) APIs. To be evaluated for a business relationship
with Motorola please refer to the below.” Shortly, Motorola ask to send a
description of the project, what kind of company we are and similar
company related questions. This request should be made to
innovate@motorola.com, allowing 4 to 6 weeks for evaluation. At this day,
we haven’t received any reply after two requests in 10 weeks.

 As we didn’t receive any reply, we tried a second time through the
tech support site of Motorola9. We state the same questions as previously,
but receive a totally different answer:

“If you are requesting the JAVA API for the Location API please follow the
proceeding procedure:

Should you have access to an A1000 from the Hutchison 3G network and
would like access to the A-GPS Location API from within J2ME, then it is
recommended that you seek guidance from the Operator "Hutchison 3G".
The reason for this is that the API is protected under a security signing
framework and requires H3G authority to access this feature.”

As we have bought our mobile through 3, which is the same as
Hutchinson 3G network, we kindly ask Motorola to give us a precise
contact at 3, to help us receive a quick answer. Unfortunately, Motorola
reply negatively and pretend not to have any contact details of 3.

 Having had previous contact with 3, before buying the phone, we
sent immediately an email to their customer service. However they have
deactivated this e-mail address and all requests have to be made
through their website interface. A request has been sent through their
website. Until today, this request has not been answered.

 Searching for alternative solutions, we found a navigation program
using the GPS on the Motorola A1000. When testing the trial version, the
GPS is indeed activated. We tried to contact the producers of this
application to seek for guidance, but they were enabling to help us.
According to them, the SDK for the A920, a precursor to the A1000, had
the location API included. Another website10 offers a free GPS solution for
the A920 and A925, with open source code. We tested it on the A1000 but
it was unfortunately incompatible.

Apparently, Motorola, in accordance with 3, have decided to change
their policy and closed down development opportunities. Without the
help of 3 is thus impossible to use the location API and access the working

9 Available online at https://motocoder.custhelp.com
10 Available online at http://per.nitro.dk/

45

GPS on the Motorola A1000. This caused our decision to use randomly
generated provisionally enabling us to create a partly functioning
prototype. However, we used the same method names and declarations
as used by Motorola in the A1000 Developer guide to limit the number of
changes to be made once the location API is available.

5.4 Future Developments

The main task for the future is to get access to the location API from
Motorola by acquiring the licensed SDK, which includes the different
packages. This is essential for the continuation of the project. The system
designed is a location-based service. If it is impossible to get the location
details, it doesn’t fulfill the purpose of its existence. Additionally, if the
program can be created using the Motorola SDK, the getMachine
method to get the IMEI of the phone will be able to be fully implemented.

 A key evolution will be to change the interrogation request
procedure from a timer, as it is now, to an intelligent agent . It will have to
calculate when it is appropriate to send a new tag interrogation,
according to various parameters, as for example the speed of the user
and relative change of position.

 The tag validity feature will have to be worked on. It should become
possible to give an unlimited time of validity. However if a precise date
and time is given the tag validity needs to be translated from an amount
of hours in a date and time item according to the time of creation of the
tag and the validity period as chosen by the user. The server will need to
deactivate the tag once this date and time item has been reached,
without deleting the tag.

 The application also needs to be able to receive other information
than text as content. It should be able to read different MIME data types.
How to implement this and how to create other types of data are
challenges that required to be met.

 The vibration feature of the phone is important, as we are
confronted with visually impaired. A definition of its use needs to be
made.

 On the server side, the use of a database will have to be
implemented, connecting the server to the database using JDBC. The
data in the database must be checked for consistency. Furthermore, as
the system is to be used by more than one client, the server has to be

46

optimized. It needs to be powerful and available at all times. The
scalability has thus to be improved. Security and privacy issues have to be
studied thoroughly.

The tag archive will also become a very useful resource in the
future. The analysis of the tag history could be used in predictability
researches and also for other purposes.

Software wise, it would also be good to have the midlet verified in
order to receive the Java Verified label, ensuring it is a trusted midlet. This
will take away the “untrusted midlet” warnings during installation and
when the midlet makes its first network request. The midlet would then also
need to be able to be installed over-the-air.

We have seen a variety of propositions for future improvements of
the MobiVTag project. However there are many more. We need to keep
in mind that the software’s end-user will be visually impaired persons. Thus,
as targeted users, the particular requirements of visually impaired
necessitate to be studied closely in the future. They know theirs needs
better than anyone. Working hand in hand with them will ensure a further
success of the MobiVTag project.

47

Chapter 6 – Conclusion

The MobiVTag project started with a project proposal. It has since then
evolved significantly. Scenarios of use have been prepared. The
architecture of the system has been modelised. A long period of time has
been put in choosing the appropriate hardware and a first prototype
application has been programmed, opening opportunities to continue
with the future steps of the project.

 However, this mémoire has helped us discover a more important
issue. The problems encountered during the buy of hardware and
especially the use of the mobile phone once it had been acquired raise
deep concerns.

 The disparity of technology was our first observation. How can
Motorola motivate that their newest UMTS phones are not available in
Switzerland, although the UMTS network is available and functioning?
Motorola was unable to provide or sell to us directly one of their existing
mobile phones for a purely non-commercial research project, conducted
by a renown European university.

When starting the programming, it soon became clear the key
programming features of the phone were unavailable and Motorola were
unable to give us access to these API’s: Either not responding to our email
requests or blaming a security signing framework, requiring the 3 network
authority to access the requested feature. The 3 network were not of
much more help as our emails remained unanswered. Clearly, innovation
in the telecommunication field is blocked by collaboration between
network operators and mobile phone producers. By requiring special
license agreements for certain API’s, the telecom industry control
development and refrain the possibilities of pursuing innovative ideas from
outside parties. Having paid enormous amounts of money in a period of
wild bidding to acquire UMTS licenses in European countries, mobile
operators want to guarantee their income by controlling as much as
possible. Obviously, location based services have been identified as
resources to control.

The consumers have simply been once again taken hostage by the
telecom industry, as it is the case with the prices of overall phone
communications. In a broader perspective, innovation can be seen as an
essential element for the growth of our economies and for the evolution of

48

our society. However these effects are slowed down when major industrial
players refrain the right to innovation. If the benefits to the society in a
wide sense should prevail over the benefits of only shareholders,
something has to be done to safeguard the right to innovation.

49

Bibliography

Dimitri Konstantas, Mobile Virtual Tags for the Visually Impaired (2004).

Julio Sanchez, Maria P. Canton, Java 2 (2000), IDG Books, 1st Edition.

Walter Savitch, Java, an Introduction to Computer Science and Programming (2001),
Prentice Hall, 2nd Edition.

Steven Holzner, Java Server Pages (2002), SAMS, 1st Edition.

Martin de Jode, Programming Java 2 Micro Edition on Symbian (2004), Symbian, 1st
Edition.

Motorola, Motorola A1000 SDK Users Guide (2004), Motorola, 1st Edition.

Motorola, Motorola A1000 J2ME Developer Guide (2004), Motorola, 1st Edition.

Chantal Morley, Jean Hugues, Bernard Leblanc, UML pour l’analyse d’un système
d’information (2002), Dunod, 2nd Edition.

Pascal Roques, Franck Vallée, UML en action, (2003), Eyrolles, 2nd Edition.

Online: http://doc.trolltech.com/4.0/model-view-programming.html, Trolltech, 2005.

