

Power- and Delay-Aware Mobile Application-Data Flow Adaptation

the MobiHealth system case study

Katarzyna Wac (Kate), PhD student

Pravin Pawar, Bert-Jan van Beijnum, Richard Bults Mortaza Bargh, Arjan Peddemors

Outline

• Introduction

m-health services: from MobiHealth project to MobiHealth[™] system

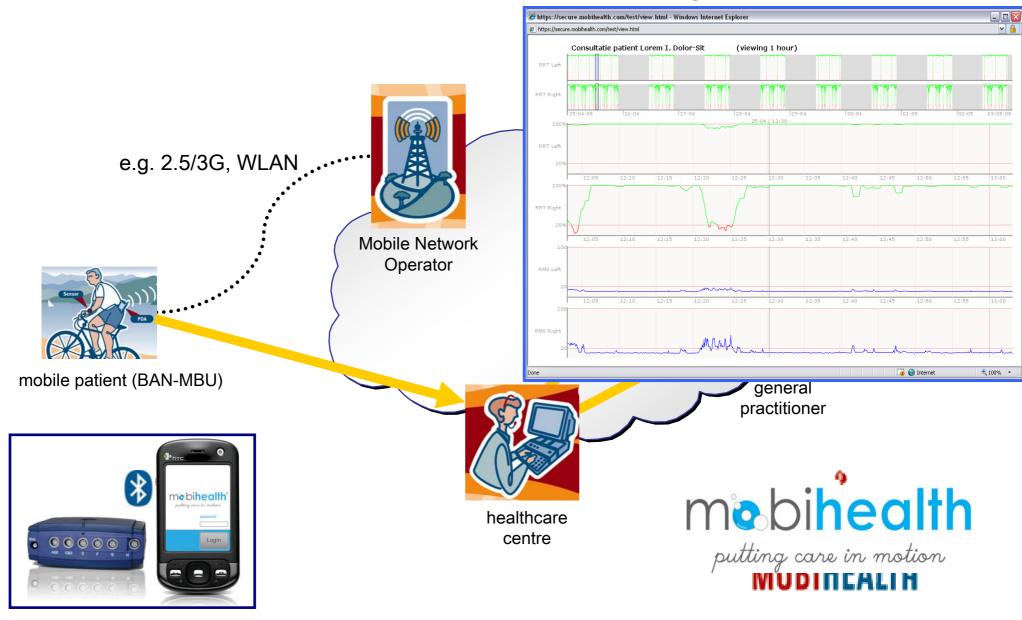
Problem Description

telemonitoring service: battery consumption, delays vs. NI choice

• Approach

measurements-based performance evaluation of service for different NIs

Conclusions & Recommendations


which NI choice is best for which application flow?

Introduction

m-health services from MobiHealth project to MobiHealth[™] system

Meetithleeltehr Moojesterg services

FACULTÉ DES SCIENCES ÉCONOMIQUES ET SOCIALES

MobiHealth System History

2002-2004: <u>MobiHealth</u> – EU IST-2001-36006 (5 countries) m-health services: technically feasible? (emerging 2.5G/3G)

2005-2006: <u>HealthService24</u> – EU eTEN-517352 (4 countries) m-health services: clinically/commercially feasible?

2004-2008: <u>Freeband-Awareness</u> – Dutch BSIK-5902390 m-health services: proactively context-aware? (security/privacy?)

from 2007: <u>MobiHealth BV</u> – University of Twente (NL) spin-off commercial m-health services: platform for any sensor system?

2007-2009: <u>Myotel</u> – EU eTen-C046230 (4 countries) telemonitoring/teletreatment services: chronic neck-shoulder pain?

Problem Description

telemonitoring service: battery consumption, delays vs. NIs status

Problem description

Focus: explorative study

ÉCONOMIQUES ET SOCIALES

- mobile: limited processing, communication, storage, battery capacity
- mobile health services need to support <u>emergency</u> & <u>non-emergency</u> cases
- health telemonitoring service performance:
 - data delay

- =f (NIs status)
- battery consumption

How to choose NI and parameterize application flow to

- match delay requirement to emergency/non-emergency case and
- minimize battery consumption

FACULTÉ DES SCIENCES ÉCONOMIQUES ET SOCIALES

Approach

measurements-based performance evaluation of telemonitoring service for different NIs

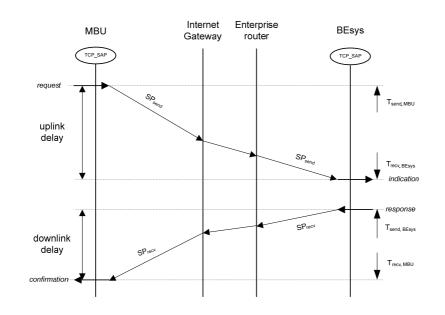
Measurements Setup

MobiHealth[™] system used

ÉCONOMIQUES ET SOCIALES

- cardiac patient case: 3 leads ECG, heart rate*, SpO2, pleth, alarm (128 Hz)
- MBU: Qtek 9090, Windows Mobile® 2003 (!battery drain!)
- main battery: Li-ion polymer 1490 mAh
- NI: Bluetooth (always ON gathering data from MOBI™)
- NI: WLAN (802.11b, OS 'best-battery' setting)
- NI: WWAN-GPRS (class 10: 4+1/3+2 slots)
- Application flow: 5-14 Bytes, 128Hz
 - aggregation: 1 second of data
 - compression (ZIP): 38-85 %
 - TCP-IP end-to-end path
 - continuous: ~1.2-1.5, 5.5 or 7.7 kbps
 - bursts: 5.5 or 7.7 kbps, ~ Mbps

*heart rate is derived from 3 leads ECG

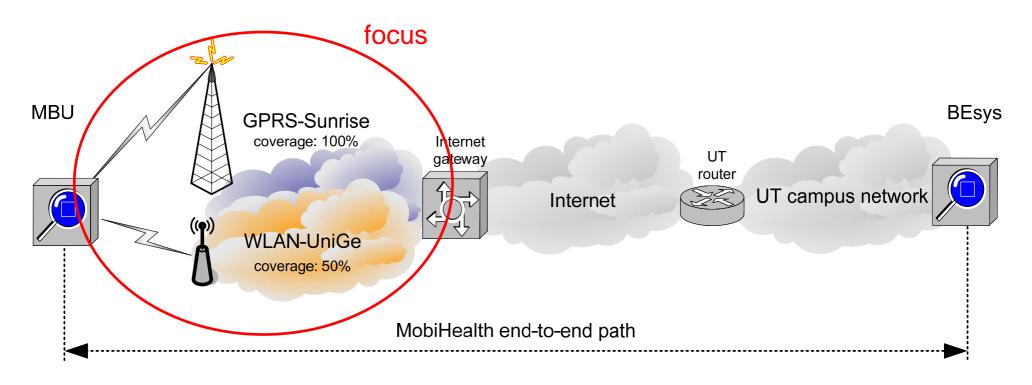

NI status: ON-IDLE-OFF

Approach: Measurements

Application-delay: App-RTT

- system response time for: telemonitoring/teletreatment
- does not require MBU & BEsys clocks synchronization
- MBU: measures it every 10 seconds

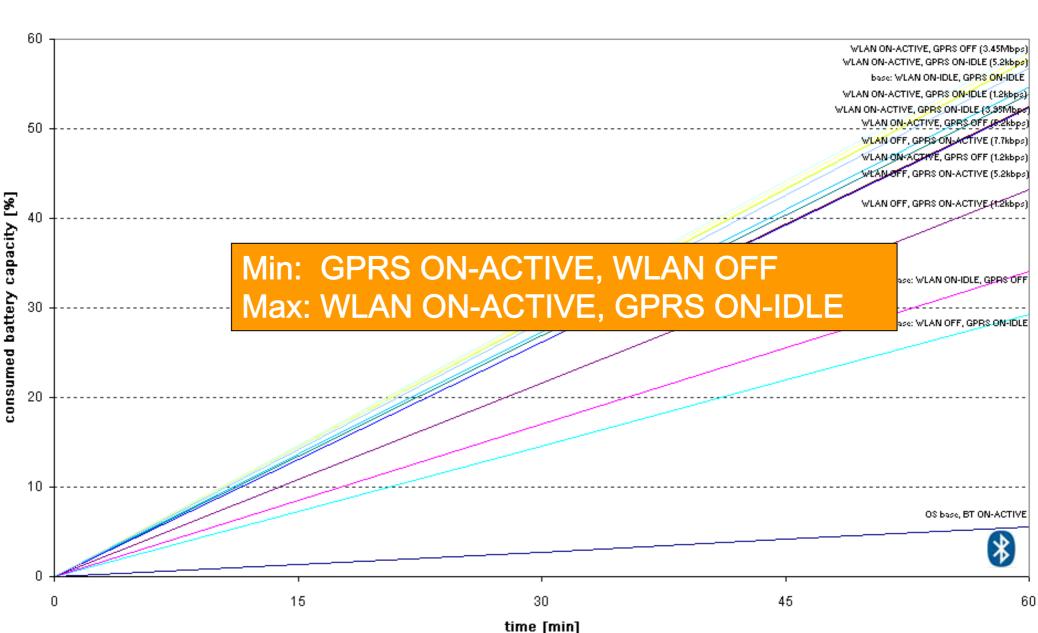
Approach: Measurements

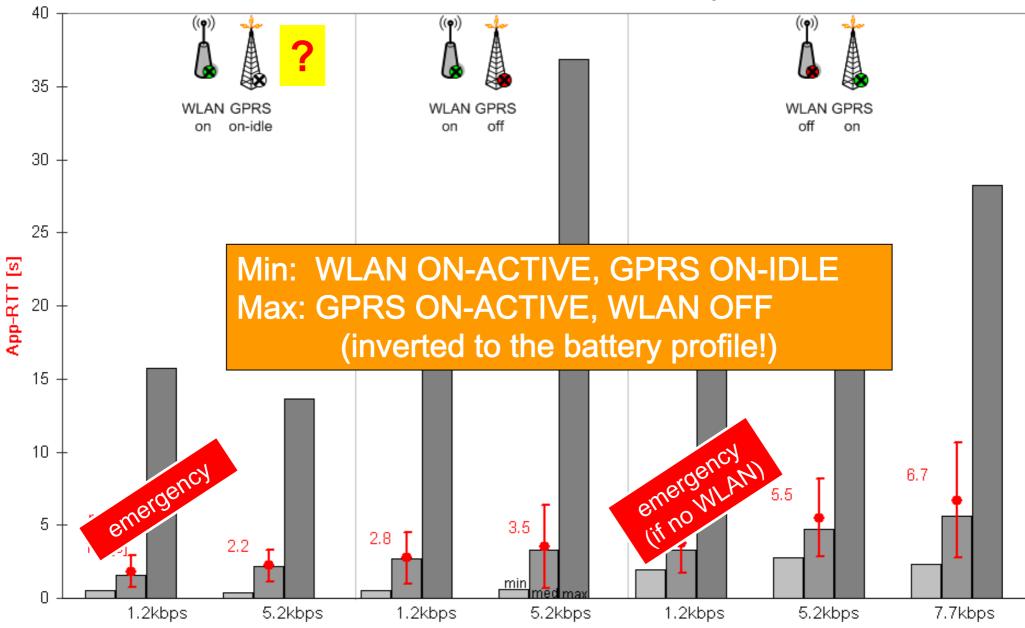

Remaining battery level (Windows Mobile®)

• MBU: measures every 5 seconds

ntrings		-# _X Y _X € 9:39	ok
Power			
🔋 Main battery:	Li-ion		
Battery power remaining:			
		100%	
Battery Advanced			
Menu			

Measurements setup


BEsys


FACULTÉ DES SCIENCES ÉCONOMIQUES ET SOCIALES

Selected Findings

NI choice: consumed battery capacity

NI choice: App-RTT delay

NI activation strategies: power efficiency

FACULTÉ DES SCIENCES ÉCONOMIQUES ET SOCIALES

Conclusions & Recommendations

telemonitoring service: which NI choice is best?

Conclusions & Recommendations

- GPRS vs WLAN have complementary profiles
 - GPRS: power consumption lower, App-RTT higher than WLAN
- App-RTT vs power consumption
 - minimal App-RTT if continuous application flow
 - minimal power consumption if application flow in bursts
- ? WLAN App-RTT lower when GPRS ON-IDLE than when GPRS-OFF
- Optimal choices:
- emergency: continuous flow (App-RTT efficient)
 - WLAN ON-ACTIVE (GPRS ON-IDLE)
 - GPRS ON-ACTIVE (WLAN-OFF)
- non-emergency: bursty flow (power efficient)
 - WLAN ON-ACTIVE/-IDLE (GPRS ON-IDLE) → n=4 seconds of data
 - GPRS ON-ACTIVE/-IDLE (WLAN-OFF) → n=6 seconds of data
 - larger n are not power-efficient enough to be considered (+ patient unreachable)

Future work

- More measurements
 - NI activation-deactivation (ON-OFF) and NI-NI WLAN-GPRS handovers
 - multiple MBU-devices, NIs, different locations (mobile!) and times
 - detailed study on delay variation as f(NI)
 - multiple application data flows with different App-RTT requirements
- NI activation strategy vs.
 - monetary cost of networks usage
 - security considerations
- Further QoS/QoE considerations for the Mobihealth system
 - requirements & provisions
 - towards dependable system

 \rightarrow dynamic system adaptation e.g. self-healing

www.mobihealth.com

www.mobihealth.org

www.healthservice24.com

Myotel INNOVATING HEALTH COMMUNICATIONS

www.myotel.eu

www.awareness.freeband.nl

Thank You!