

Collaborative Sharing of Quality of Service Information for Mobile Service Users

Katarzyna WAC, MSc

Advanced Systems Group
Information Systems Department
University of Geneva

Presentation Layout

- Problem Description
 - QoS-requirements vs. QoS-provisions, state-of-the-art solutions, identified challenge and research objectives
- New Approach: Collaborative Sharing of QoS-information
 - system design
 - case study: feasibility assessment in a mobile healthcare domain
- Conclusions
 - novelty
 - current and future research focus

User Computing Trends

Computers

Timesharing

One

Persons

User Mobility Trends

Mobile Service

example: health telemonitoring and teletreatment service

Quality of Service

- Quality of Service (QoS)
 - "collective effect of service performances which determine the (objective) degree of satisfaction of a user" (ITU-T, 1993)
 - QoS requirements and QoS provisions expressed quantitatively in terms of criteria
 - e.g.: speed, accuracy, dependability, security level and monetary cost

Problem Description

Required QoS vs. Provided QoS

- Success of service delivery depends on QoS provided by underlying heterogeneous networking environment
 - QoS requirements can change anywhere-anytime, e.g. patient's emergency
 - QoS provisions can change anywhere-anytime, e.g. highly mobile user

State-of-the-art

mobile device app.server

wireless network provider Internet service provider network

Quality of Service (QoS)

- traditional QoS-management
 - e.g. admission control, resource negotiation/reservation
- Mobile Network Operators
 - user 'lock-in'
- service providers
 - non-interactive applications e.g. mobile gaming
 - proprietary application-protocols, details concealed e.g. Skype
- identified challenge : user-centric approach
 - monitor 'best-effort' QoS > quantify patterns > predict 'best-effort' QoS

- 1. novel system: requirements and design
 - collaborative sharing of QoS-information for mobile users (Mobile Web 2.0 paradigm)
- 2. predictions feasibility assessment
 - collect extensive set of measurement data at user device
 - test hypothesis of collaborative QoS-information sharing by mobile users

based on the above - point to a possible QoS-management framework

System Design

Collaborative Sharing of Information

• QoS Virtual Tags (QVT): encapsulates measurements and predictions information

System Design

System Design: QoS-management

Case Study mobile healthcare services

MobiHealth System

- patient: COPD (Chronic Obstructive Pulmonary Disease) telemonitoring user
 - vital signs: ECG, heartrate, temperature, plethysmogram, oxygen saturation

KA-RTT Definition

- Performance criterion: *speed*, performance measure: *delay*
- Keep-Alive Round Trip Time (KA-RTT)

KA-RTT Measurements

new KA-RTT value every 10 seconds

MobiHealth User Mobility

Timeframe: mid Nov - mid Dec 2007

distance from L1 (home) (90% of time – below 1.7 km)

MobiHealth User Mobility (cont'd)

KA-RTT Statistics

9 KA-RTT classification tasks

Collaborative-Sharing of Information

- User cases
 - device 1 or device 2

- device 1 measurements → for device 2 predictions
- device 2 monitoring → for device 1 predictions

- device 1 + 2 measurements \rightarrow for device 1 predictions
- device 1 + 2 measurements \rightarrow for device 2 predictions

Device 1: Prediction Results

Device 2->1: Prediction Results

Device 1,2->1: Prediction Results

Prediction Results

- predictive attributes: location, time, wireless network provider and technology
 - most accurate are logic-based algorithms: trees and rules
- device 1, device 2

- accuracy > 75 %: binary tasks, fixed location and network, having collected long history
 - 69% of time user spends in top 2 locations
- recommended history minimum 7 days
- device $1 \rightarrow 2$ or $2 \rightarrow 1$
 - accuracy > 65 % +: binary tasks
 - accuracy changes on average 2 ± 13 % than if use own history

- device $1,2 \rightarrow 1$ or $1,2 \rightarrow 2$
 - accuracy > 95 %: binary tasks
 - accuracy changes on average 0 ± 11 % than if use own history

Conclusions

Conclusions

Proposal

- system for collaborative-sharing of QoS-information
- assessed technical feasibility of predicting KA-RTT delay value for health an operational telemonitoring system
- Novel approach in QoS-management empowering mobile service users
 - builds upon a collaborative sharing of QoS-information (Mobile Web 2.0)
 - builds upon network provisions at 'best-effort' QoS level
 - beyond current QoS-management frameworks
 - beyond current user 'lock-in' in the network
 - no changes in the existing network infrastructures
- Current research: validation through prototyping
 - more predictive features not to end up with 'data dredging' (case: for device 1,2 \rightarrow 1)
 - future research: more users, applications, location areas, longer time intervals, ...

Questions & Answers