
Design & Implementation of a

Location and Time Specific Context Source

SurrogateHost

TraceStore

User

Lookup
Service

WLAN or GPRS

Nomadic
Time-based
Positioning

Service

Integration of Time-Awareness in the

Existing Nomadic Positioning Service

Laurent Kolakofsky

Contents

1 INTRODUCTION 1
1.1 The Freeband Awareness Project 1

1.1.1 Introduction . 1
1.1.2 Project’s Goal . 2
1.1.3 Architecture . 3

1.2 Nomadic Services . 4
1.2.1 Overview . 4

1.3 Nomadic Positioning Services 4
1.3.1 Architecture Overview 5
1.3.2 Basic Features . 5
1.3.3 Design Features . 6
1.3.4 Problems . 6

1.4 Nomadic Time-based Positioning Service 8
1.4.1 Introduction . 8
1.4.2 Combining Nomadic Positioning Service and Time-awareness

as a solution . 8
1.5 Research Questions . 8
1.6 Approach . 9
1.7 This Document’s Structure 10

2 BACKGROUND 11
2.1 Introduction . 11
2.2 Software Platform . 11

2.2.1 J2ME . 11
2.3 Positioning . 12

2.3.1 JSR179 . 12
2.3.2 Place Lab . 13
2.3.3 GPS . 15

2.4 Time . 17
2.4.1 NTP . 18
2.4.2 Atomic / Radio clock 19

I

2.4.3 GPS . 19
2.5 Service Oriented Architecture 20

2.5.1 Jini Network . 20
2.5.2 Jini Surrogate . 22

2.6 Nomadic Positioning Service 23
2.6.1 MSP Location Server 23
2.6.2 Surrogate Location Service 24
2.6.3 MSP Location Client 24
2.6.4 LookupServer . 25

3 DESIGN OF NOMADIC TIME-BASED POSITIONING SER-
VICE 26
3.1 Introduction . 26
3.2 Requirements . 27

3.2.1 User/Provider Clock Synchronization 28
3.2.2 Timestamp integration 29
3.2.3 Time-awareness for Service User 30
3.2.4 Including position accuracy 31
3.2.5 TraceStore Specifications 31
3.2.6 Design features preservation 32

3.3 MSP Location Client Redesign 33
3.4 High-level Design . 33
3.5 Changes to the existing Nomadic Time-Based Posi-

tioning Service . 34
3.5.1 TraceStore-multiple instances 34

4 EVALUATION 35
4.1 Introduction . 35
4.2 Requirements Evaluation 35

4.2.1 User/Provider Clock Synchronization 35
4.2.2 Timestamp & Position Accuracy Integration 35
4.2.3 Time-Awareness for Service User 36
4.2.4 TraceStore Specifications 36
4.2.5 MSP Location Client Evaluation 37
4.2.6 Design features Preservation 37

4.3 Implementation Problems/Errors Encountered . . . 38
4.4 Conclusion . 38

5 CONCLUSION 39
5.1 Introduction . 39
5.2 Value-added service . 39

II

5.3 Future Work . 40
5.3.1 Keeping Identification of mobile device through sessions 40
5.3.2 TraceStore multiple instances 40

5.4 A portable solution . 40
5.5 Conclusion . 40

III

Preface

This thesis is the final report of the project completed as a partial fulfill-
ment of the requirements for my License diploma in the Information Sys-
tems, oriented in Technology. My work includes the comprehensive research,
design and implementation of a Nomadic Time-based Positioning Service
(i.e. time-aware) based on the existing Nomadic Positioning Service (i.e.
location-aware). The latter is based on a combination of Place Lab position-
ing software with a Jini Surrogate architecture. This thesis researches the
most efficient solution to integrate time-awareness in the existing location-
aware service.

This thesis was completed at the University of Twente in Enschede (the
Netherlands) between the October 2005 and March 2006 in the Department
of Electrical Engineering, Mathematics and Computer Science, and Archi-
tecture and Services of Network Applications research group.

I would like to thank my coordinator Kate Wac, my supervisor Aart van
Halteren for their comments and help. I enjoyed working on this assignment
and was able to finish it thanks to them.

Laurent Kolakofsky

Geneva, 25th March 2006

IV

Chapter 1

INTRODUCTION

Nowadays, more and more people own a personal mobile device such as a
Personal Digital Assistant (PDA) or a Smartphone, which are equipped with
wireless networking capabilities such as WLAN, 2.5G, 3G and Bluetooth.
Those mobile devices make possible a new kind of mobile/ubiquitous services
that are aware of their users’ environment. Those are called context-aware
services, and the more information a service utilizes from the user environ-
ment, the more customized and personalized at run-time to the user’s needs,
the service can be. There exist some location-aware services, i.e., aware of
the geographical location of the user; aware of ”where” they are used. These
services are mainly used for tourist guidance systems in an unknown loca-
tion. We argue that these location-aware services can be highly improved by
adding a time-awareness; this way the service would not only know ”where”
it is used but also ”when”.

This term paper’s work has been carried out as a part of the Dutch Freeband
AWARENESS (Context AWARE mobile NEtworks and ServiceS) research
project.

1.1 The Freeband Awareness Project

1.1.1 Introduction

Increasingly mobile devices, sensors and consumer electronics are equipped
with (wireless) networking capabilities. These devices communicate via dif-
ferent types of networks, and together enable a complete new generation of
applications: context-aware and pro-active applications.

1

Context-awareness paradigm is used by applications that have information
about the circumstances (i.e. context) under which they operate and can
react accordingly to this context and to the changing user needs.
Pro-activeness paradigm is used by applications that act in advance to deal
with an expected event, or context change.

The context-aware applications make use of the context of their users, and
of the resources (in terms of e.g. network capacity, devices) that are cur-
rently available at user’s location and time. For example, a context-aware
application could find the nearest restaurant according to user’s food-type
preferences, his current geographical position and a time of the day.

The Freeband AWARENESS Dutch national project [AWA01] focuses on
service and network infrastructures that are needed to support delivery of
context-aware and pro-active applications over heterogeneous mobile net-
works. Particular attention is given to mobile health applications for tele-
monitoring and tele-treatment services [AWA02].

Eight Dutch organizations participate in the AWARENESS project: Lucent
Technologies, University of Twente, Roessingh R&D, Telematica Institute,
Twente Institute for Wireless and Mobile Communications, Ericsson, Yucat,
Twente Medical Systems International [AWA02].

1.1.2 Project’s Goal

The goal of the Freeband AWARENESS project is to research and design
a service and network infrastructure for context-aware and pro-active mo-
bile applications, and validate this through prototyping in a mobile health
domain. In the AWARENESS project vision, a human user is always and ev-
erywhere surrounded by a networking environment (’ubiquitous’) that is able
to determine the identity of the user and the (upcoming) context information
that is (or might become) relevant to service provisioning (’attentiveness’),
such that the user can have anywhere, anytime access to mobile services in
a secure and privacy-sensitive manner. One of the results of the project will
be the Integrated Health Demonstrator using proof-of-concept software com-
ponents [AWA02].

2

1.1.3 Architecture

The AWARENESS architecture consists of three layers: the mobile applica-
tions layer, the service infrastructure layer and the network infrastructure
layer (Figure 1.1).

Mobile Application Layer

Service Infrastructure

Network Infrastructure

Context-aware mobility support

Context-aware, pro-active

Generic service components
Context management
Security and identity AWARENESS

Infrastructure

Figure 1.1: AWARENESS Infrastructure [AWA02]

Starting from the bottom, the network infrastructure layer offers seamless
mobile connectivity (with use diverse wireless network technologies e.g. 2.5G,
3G or WLAN) to the service infrastructure layer.

The service infrastructure layer provides execution environment for mobile
services. It consists of generic service components that support rapid devel-
opment of ubiquitous attentive applications. These support functionalities
include context management, intelligent context information processing, fed-
erated identity management, 3rd party access control, mobility management,
service discovery, privacy enforcement and security mechanisms.

In the AWARENESS project, the network and service infrastructures will
be validated through prototyping in a mobile health domain; therefore, the
mobile application layer will be implemented in this specific domain. The
aim is that the implemented health applications will support tele-treatment
of patients. Therefore, a part of the mobile health service platform is a
Body Area Network (BAN) consisting of sensors and actuators worn by a
patient collecting vital signs data and making them available in realtime to
healthcare professionals in health care centres [MPM01].

3

1.2 Nomadic Services

1.2.1 Overview

The AWARENESS project focuses on service and network infrastructures
that are needed to support delivery of context-aware and pro-active appli-
cations over heterogeneous mobile networks. Therefore, the project offers
an innovative service infrastructure named Mobile Service Platform (MSP),
which facilitates both: usage and provisioning of mobile services by mobile
devices. In this context, nomadic services are services provided by mobile
devices. The MSP simplify the development of nomadic services, and it takes
into account the fact that mobile devices use wireless networks that give no
reliability guarantees.

Mobile Device

Nomadic
Service

Fixed or Mobile
Device

2.5G or 3G
Network

Service
User

Service
Provider

Internet

Figure 1.2: Nomadic Service Architecture [NPS01]

Figure 1.2 presents a nomadic service provider offering a service on a mobile
device. The service may be offered through a 2.5G or 3G mobile operator
network as well as through any other wireless network supporting user mo-
bility. A mobile network is then connected to the internet, via which the
service user on a fixed or mobile device can use the nomadic service [NPS01].

1.3 Nomadic Positioning Services

In this section we present the existing Nomadic Positioning Service (NPS)
developed in frame of the preceding student’s project [NPS01].

4

1.3.1 Architecture Overview

The Nomadic Positioning Service implements location-awareness and partic-
ularly it aims in determining a geographical location of a nomadic service
provider. This service is composed by combination of positioning software
and the Mobile Service Platform (MSP), which includes service discovery
mechanisms.

Mobile Device

Fixed or Mobile
Device

2.5G or 3G
Network

Service
User

Service
Provider

Internet

Nomadic Positioning
Service

Positioning Software

Positioning Hardware
GPS,GSM, WiFi, etc.

Figure 1.3: Nomadic Positioning Service [NPS01]

Figure 1.3 presents an overview of the Nomadic Positioning Service. The
positioning software deployed at the mobile devices, estimates the location
of the nomadic service provider by analyzing particular parameters related
to the used wireless technology. These parameters include detected wireless
(radio) beacons1, their response time and signal strength. The MSP service
discovery architecture allows the nomadic services to be advertised to its
potential users on the (mobile or fixed) internet. This architecture shields
from users the fact that in a mobile environment a nomadic service provider
may change address at any time due to roaming through different mobile
operator networks.

1.3.2 Basic Features

The Nomadic Positioning Service allows mobile devices (nomadic service
providers) to provide their location to a (mobile or fixed) service user. Each

1Radio beacons are transmitted by a radio transmitting station and those normal radio
signals can be used for determining the direction or position of those receiving them.

5

nomadic device provider provides its own location information. There are
two modes of operation. Firstly, a service user can subscribe to a mobile de-
vice’s location service such that he will be notified on every location change.
In a second mode, a user can make a request for the last known position
of a nomadic service provider. A service user can request location informa-
tion to as many service providers as he needs. When a mobile device stops
providing a nomadic service, for example due to a wireless network failure,
within a timeout this nomadic service will disappear from the service listing
advertised to its users.

1.3.3 Design Features

The main design features of the Nomadic Positioning Service are [NPS01]:

a) Efficient use of bandwidth - the amount of data exchanged between the
service provider on a mobile device and the user on the (mobile or fixed)
internet can be adapted to the capacity and cost of the available wireless
technology.

b) Numerical scalability - the bandwidth usage on the wireless link does
not increase with the number of parties interested in the location of a mobile
device.

c) Plug-and-work - no additional configuration is required for publishing ser-
vices when new nomadic service providers, i.e. new mobile devices come
online.

For more information about Nomadic Positioning Service requirements, its
features and development process please refer to the preceding student’s
project report titled ”Nomadic Positioning Services for a Mobile Service Plat-
form” [NPS01].

1.3.4 Problems

The major problem related to the current implementation of the Nomadic
Positioning Service we address in this work is the fact, that this service im-
plements only a location-awareness but not a time-awareness. That means
that in the current implementation of the system, a service user can get only
the location of the nomadic service provider, without the indication of time,
for which this location is (or was) valid. The current implementation of the
service, it does not have any kind of time management or even a reliable time

6

source, except from a mobile device’s clock, which has no guarantee of being
valid or precise. The problem we indicate is that in the current implementa-
tion of Nomadic Positioning Service, there is no reliable timestamp associated
to a location estimation provided by nomadic service provider. Moreover,
there is no guarantee upon clock synchronization between nomadic service
provider and the service user. This can be an obstacle for some time-critical
applications. For example, in the healthcare domain, where the service reli-
ability may decide upon one’s life, time-awareness is required. Imagine the
tele-monitoring service used for diabetic patients, in which healthcare pro-
fessional may continuously monitor sugar-level in the patient’s blood and
depending on it, he can remotely decide upon injection of insulin through a
insulin pump directly connected to a mobile device worn by the patient. In
such a case, a lack of time-awareness of events (when exactly sugar-level in
the patient’s blood was too high/low) and then time synchronization (how
much time it takes for a healthcare professional to react) between patient’s
mobile device and healthcare professional device may endanger patient’s life.

Another problem related to the current implementation of the Nomadic Po-
sitioning Service we address in this work is that the accuracy of location es-
timation can vary depending on the environment (i.e., the number of known
radio beacons in the area) and the algorithm chosen for this estimation. De-
pending on the application, the accuracy of the position may be a very critical
parameter. Unfortunately, the existing implementation of the Nomadic Po-
sitioning Service does not provide it reliably to the service user.

Another very important problem we address is that in the current imple-
mentation of Nomadic Positioning Service there is no storage of history of
nomadic service provider locations; the service user gets only the location
change for the ongoing session, and no historical data can be provided to
him. Particularly, when a service user subscribes to a Nomadic Positioning
Service, he has to always firstly request the location nomadic service provider
and then wait for the service provider (a mobile device) to publish its actual
location. It means that in case if the nomadic service provider is offline, i.e.,
has no wireless connectivity, the service user will not be able to get its last
known position, because it is not stored by the service.

7

1.4 Nomadic Time-based Positioning Service

1.4.1 Introduction

To deal with highlighted problems of Nomadic Positioning Service, we pro-
pose to take into consideration time as an additional dimension of the no-
madic service positioning. In this section, we present shortly our proposed
solution,which we denote as the Nomadic Time-Based Positioning Service.
Further details on this service we provide throughout the whole document.

1.4.2 Combining Nomadic Positioning Service and Time-awareness
as a solution

To integrate time-awareness in the Nomadic Positioning Service, we must
integrate it into the nomadic service provider and into the service user com-
ponents.

At the nomadic service provider side, we need to timestamp every location-
request event and send the timestamp together with location information to
service user. In order to get reliable time-aware service we need to ensure
that service user’s and provider’s clocks are accurate and synchronized.

At the user side, integration of time-awareness would give the user the pos-
sibility to request the location of the nomadic service provider for particular
time instance, which can be defined in the past as well as in the present.
This implies that the service to store location events together with their
timestamps, such that they can serve later user’s requests. We proposed the
development of the component that stores location events and their times-
tamps and we denoted is as TraceStore.

1.5 Research Questions

Adding time-awareness into the Nomadic Positioning Service required study
of its current architecture. Based on that study, we have enumerated identi-
fied problems (as indicated in section 1.3.4) and sketched proposed solution
by defining some of the main features of the Nomadic Time-based Position-
ing Services (as indicated in section 1.4.2).
To pursue our solution further, we have identified four research question
domains. Firstly, we need to focus on the nomadic service provider/user
clock synchronization, secondly on the time-awareness of the nomadic ser-

8

vice provider component, thirdly service user’s time-awareness and finally on
the efficiency of Nomadic Positioning Service redesign. Therefore, we con-
sider the following research questions.

Research questions concerning nomadic service provider/user clock synchro-
nization:
1) What is the most efficient way to accurately and reliably synchronize ser-
vice user’s and nomadic service provider’s clocks?

Research questions concerning the nomadic service provider’s time-awareness:
2) What is the most efficient way to integrate timestamp in location events?

Research questions concerning the nomadic service user’s time-awareness:
3) What is the most efficient way to log all time-aware location events and
provide them on user’s request?

Research questions concerning efficiency of Nomadic Positioning Service re-
design:
4) What’s the most efficient way to redesign the existing Nomadic Position-
ing Service while keeping its design features such as an efficient bandwidth
usage, a numerical scalable architecture and lack of need for an additional
configuration when new devices come online ?

1.6 Approach

Different approaches can be taken to answer the identified research questions.
We have chosen firstly to study the design and implementation of existing
Nomadic Positioning Service and its direct background components, in par-
ticular the Jini Service Oriented Architecture and Place Lab. Based on this
background knowledge we propose redesign of Nomadic Positioning Service
such that it integrates time-awareness at the nomadic service provider and
user sides. Furthermore, we design TraceStore component that stores loca-
tion events and their timestamps as provided by nomadic service providers.
Based on the evaluation of the prototype developed by us, some of the pos-
sible value-added services will be indicated and the conclusion will be given
in the last section of this document.

9

1.7 This Document’s Structure

Chapter 2 presents the results of our background study on Nomadic Posi-
tioning Service and technologies required to combine it with time-awareness.

Chapter 3 presents requirements and high-level design for a Nomadic Po-
sitioning Service integrating time-awareness, which we then denote as the
Nomadic Time-Based Positioning Service.

In Chapter 4, we evaluate the Nomadic Time-Based Positioning Service pro-
totype.

In Chapter 5, we conclude on our work and provide some future research
domain.

10

Chapter 2

BACKGROUND

2.1 Introduction

This chapter presents the results of our background study on the existing
Nomadic Positioning Service and technologies required to combine it with
time-awareness.

2.2 Software Platform

This section will briefly present the Java 2 Platform used for the Nomadic
Positioning Services implementation. For all components, the second edi-
tion of Java 2 Platform was used, i.e., the Standard Edition (J2SE), except
for the nomadic service provider component, which uses Java Micro Edition
(J2ME). This exception is dictated by the fact that nomadic service provider
is running on J2ME-enabled mobile device such as a PDA.

The portability of the Java Platform allows the Nomadic Positioning Ser-
vices to run on most of the operating systems. The hardware on which runs
the nomadic service provider must has a wireless controller supported by
Place Lab’s native code (see section 2.2.2 for details on Place Lab).

2.2.1 J2ME

Micro Edition of the Java 2 Platform (J2ME), is a collection of Java Ap-
plication Protocol Interfaces (APIs) targeting embedded consumer products
such as PDAs, cell phones and others mobile devices. J2ME-enabled mobile
device implements a profile. The most common device’s profile are a) the
Mobile Information Device Profile (MIDP) aiming at mobile devices such as

11

cell phones, and b) the Personal Profile (PP) aimed at embedded devices like
set-top boxes and PDAs. A profile is a superset of a configuration. There
are currently two configurations: Connected Limited Device Configuration
(CLDC) and Connected Device Configuration (CDC).

The CLDC configuration contains a strict subset of the standard Java class
libraries, and is the minimal needed for Java virtual machine to operate. The
CLDC is used to classify the myriad of devices into a fixed configuration.

The CDC contains a larger subset of the standard Java class libraries; it
contains almost all the libraries that are not Graphical User Interface (GUI)-
related.

As the MIDP is designed for cell phones, it targets an LCD-oriented GUI
API. Newer, version 2.0 MIDP includes a basic two-dimensional (2D) gaming
library and applications written for this profile are called MIDlets.

The Personal Profile includes a more comprehensive Abstract Window Toolkit
(AWT) subset and adds applet support [J2ME01].

In our project, we use the CDC profile and the CLDC profile of IBM’s J9
Java virtual machine (JVM) for the nomadic service provider, which allows
the service provider to run on PDA’s.

2.3 Positioning

This section presents the positioning software and hardware used by or re-
lated to the location-awareness provided by the Nomadic Positioning Ser-
vices: JSR 179, Place Lab and GPS.

2.3.1 JSR179

The Java Specification for Requests (JSR) #179 is a Location API for J2ME.
This specification defines a J2ME optional package that enables mobile location-
based application run on resource-limited devices, e.g. mobile terminals.
Particularly, this API produces information about the geographical loca-
tion of the mobile terminal to Java applications by accessing a database of
known landmarks. A landmark is only an information container; it stores
the place’s name, its description, its coordinates (and optionally its address).
The minimum platform required by this JSR is the J2ME CLDC v1.1 or

12

J2ME CDC [JCP01]. Our Nomadic Positioning Service meets this require-
ment and already implements this JSR through Place Lab, which implements
it. However, the landmarks are not used now in the Nomadic Positioning
Service because the coordinates provided by the Place Lab contain enough
location-related information and we do not need to associate them a name,
a description or an address.

2.3.2 Place Lab

Introduction

Place Lab is Java-based software developed by Intel, which provides a mobile
device positioning service for location-based mobile applications [PLA01].
Place Lab is able to determine location of the terminal (see Figure 2.1) with
the aid of nearby radio sources, such as fixed Bluetooth devices, 802.11 (i.e.,
WLAN) access points, and GSM cell towers. Particularly, the Place Lab
software ported on a mobile terminal, intercepts the IDs of these local ’radio
beacons’ (having unique or semi-unique IDs), and then it looks up positions
of correlated radio sources in a locally-cached database. Based on that as
an input, Place Lab performs a computation akin to triangulation [SLA01]
based on which it provides a mobile terminal’s position for location-based
mobile applications.

Mobile Device
with Place Lab

*

*

*

* is a known beacons from Place Lab’s mapper cache,
no data is sent to those beacons, only scan are performed.

you are herex

Figure 2.1: A mobile device equipped with Place Lab

13

Place Lab Architecture

The Place Lab architecture consists of three key elements: radio beacons in
the environment, databases that hold information about beacons’ locations,
and the Place Lab clients that use this data to estimate their current loca-
tion.
To make Place Lab clients both extensible and portable, client functionality
is broken into three logical pieces: spotters, mappers and trackers.
The spotter’s task is to monitor the radio interface and share the IDs of the
observed radio beacons with other system components.
The mapper provides the geographical location of known beacons. This infor-
mation always includes a latitude and longitude, but may also contain other
useful information, like the antenna altitude, the age of the data, a learned
propagation model, or the power of the transmitter. Mappers may obtain
this data directly from a mapping database, or from a previously cached por-
tion of a database.
The tracker is the Place Lab client component that uses the streams of spot-
ter observations and associated mapper data to produce estimates of the cur-
rent user’s position. The trackers encapsulate the system’s understanding of
how various types of radio signals propagate and how propagation relates to
distance, the physical environment, and geographical location [DEV01].

Portability

The Place Lab is highly portable and adaptable, however a small part of the
code is native to the hardware so even if it can run on large type of devices
such as a Laptop, Pocket PC or Smart Phones (as Nokia Series 60), and each
model has to be tested with it. A Hardware Compatibility List can be found
on Place Lab’s website.

Reliability - Coverage

Place Lab coverage depends on input from its users, therefore it is possible
to arrive to the area with radio sources for which there are no corresponding
radio beacons registered in Place Lab databases. This situation can be solved
with help of wigle.net (Wireless Geographic Logging Engine) database, which
may have beacons registered for these particular radio sources. The other
option is to gather on-spot information about radio sources and their bea-
cons. This process is called stumbling and requires a GPS signal receiver and
at least one radio source adapter supported by Place Lab (i.e. Bluetooth,
WLAN or GSM).

14

Accuracy

The accuracy of Place Lab location depends on many factors, where the most
important ones are the numbers of intercepted beacons, their coverage, the
reliability of the database and the position estimation algorithms.
For example, for a wide-area 802.11 WLAN-based positioning system, Place
Lab can estimate user’s position with a median positioning error around 10
to 40 meters (depending upon the characteristics of the environment, see for
example [NPS01] for more information).

Improving Place Lab’s accuracy

In a default setup, trackers may use only the data provided to them by the
spotter and mapper; however, to improve accuracy of location estimation,
it may use extra data like road paths and building locations [DEV01]. As
an example, Place Lab includes a simple tracker that computes a diagram
made up of two or more overlapping circles from the observed beacons. This
tracker uses very few resources, making it appropriate for devices like cell
phones. Place Lab also includes a Bayesian particle filter tracker (i.e., a
statistics estimation technique based on the observed data sample) that can
utilize beacon-specific range and propagation information to predict user’s
location. While computationally more expensive, the Bayesian tracker pro-
vides about a 25% improvement in accuracy and allows Place Lab to infer
richer information like direction, velocity and even higher-level concepts like
mode of transportation (walking, driving, etc.).
Another way to improve Place Lab’s location estimate accuracy is to use com-
bination of diverse trackers, returning location estimate that has the lowest
standard deviation.

2.3.3 GPS

Introduction

The Global Positioning System is a satellite-based positioning system and it
consists of a constellation of at least 24 satellites in 6 orbital planes (Figure
2.2) continuously broadcasting radio messages (containing satellites’ location,
time of day from atomic clocks and a unique ID of the satellite). Ground
stations throughout the world monitor the satellites to ensure that their
atomic clocks are kept synchronized. The first satellite has been launched in
1978 and the most recent in 2005 [GPS01].

15

Figure 2.2: GPS Constellation

In our Nomadic Positioning Service, the GPS is used to gather satellites’
coordinates such that Place Lab may estimate the device’s location through
scanning those and matching with known ones after the (earlier) GPS stum-
bling process.

Determining a position

A GPS receiver knows the location of the satellites through information in-
cluded in the broadcasted radio messages. By measuring the delay at which
messages from different satellites arrive to the GPS receiver, it estimates how
far away these satellites are. The estimated receiver - satellite distance de-
termines radius of an imaginary sphere centred at the satellite. The GPS
receiver is located where the spheres of (at least three) satellites intersect,
see figure 2.3 [GPS02].

Reliability

A GPS receiver requires a clear line of sight to the sky in order to intercept
GPS signals. The orbits of GPS satellites are designed such that at least
four satellites are always within the line of sight from almost any place on
the Earth. Three is the minimal number of satellites signals required for a
receiver to calculate its 2D position and four satellites signals is a minimum
required to calculate its 3D position and the precise time.

16

GPS receiver unit

GPS satellite

Legende:

Earth ground

GPS broadcast signal

Figure 2.3: GPS determining a position

Accuracy

The accuracy of a position determined with GPS depends on the type of a
GPS receiver. Most handheld GPS units have about 10-20 meters accuracy.
Some other types of receivers use a method called Differential GPS (DGPS)
to obtain a much higher accuracy. DGPS requires an additional grounded
radio messages sources at a known locations nearby receiver. The DGPS
location estimation has accuracy greater than 1 meter [GPS02].

2.4 Time

After presenting Nomadic Positioning Service’s location determination meth-
ods in section 2.2, this section presents the time determination software and
hardware that could be used to determine and then synchronize the No-
madic Positioning Service user’s and provider’s clocks. The requirements for
the integration of time-awareness into the Nomadic Positioning Service are
high time-clock accuracy, up-to-datedness (continuous synchronization with
a time source) and high clock resolution. To be noted that only an overview
of the available technologies for time-awareness will be made, no solution will
be designed nor implemented in this assignment; this part will be executed
in the parallel student assignment [LBP01].

17

2.4.1 NTP

Introduction

The Network Time Protocol (NTP) is a protocol for synchronizing the clocks
of distributed clients’ computer systems with a NTP server, over packet-
switched, symmetric-latency data networks [NTP02].

Performance

The NTP version 4 can usually maintain time to within 10 milliseconds
(1/100 s) over the internet, and can achieve accuracies of 200 microseconds
(1/5000 s) or better in local area networks under ideal conditions [NTP02].

Protocol Design Issues

The synchronization protocol determines the time offset of the server clock
relative to the client clock. The various synchronization protocols in use
today provide different means to do this, but they all follow the same general
model. On request, the server sends a message including its current clock
value or timestamp and the client records its own timestamp upon arrival of
the message. For the best accuracy, the client needs to measure the server-
client propagation delay to determine its clock offset relative to the server.
Since it is not possible to determine the one-way delays, unless the actual
clock offset is known, the protocol measures the total roundtrip delay and
assumes the propagation times are statistically equal in each direction. In
general, this is a useful approximation; however, in wireless network, each
way delays can differ significantly due to packet lost, network overload and
others wireless network characteristics [NTP01].

Conclusion

In case of the Nomadic Positioning Service, service provider is mobile and it
uses different wireless physical layer such as WLAN, 2.5G and 3G without
guarantees of a symmetric uplink and downlink delays. In this case, NTP up-
to-datedness (synchronization) may not be reliable, which does not allow for
the use of it as a time determination technique for the Nomadic Positioning
Service.

18

2.4.2 Atomic / Radio clock

Introduction

An atomic clock is a type of clock that uses an atomic resonance frequency
standard as its counter. The first accurate atomic clock was built in 1955.
This led to the internationally agreed definition of the second being based
on atomic time in 1967 by the International System of Units [ATC01].

Performance

An atomic clock resolution can be up to 10−9 second. Clock time may be
broadcasted and read by distant (mobile) devices through a radio transmis-
sion; clocks receivers are called radio clocks. Those receivers can get a signal
event even in a building and give good time estimation. However, due to the
low clock resolution, the precision of an estimated time is low, comparing to
other methods.

Conclusion

In case of the Nomadic Positioning Service, we need higher resolution time
estimation methods; therefore, radio clock may not be used.

2.4.3 GPS

Introduction

The Global Positioning System (mentioned in section 2.2) is a satellite-based
positioning system and it consists of a constellation of satellites continuously
broadcasting radio signal (containing satellites’ location, time of day from
atomic clocks and a unique ID of the satellite). This system allow also for
time-estimation.

Time Accuracy

The accuracy of a time determined with GPS depends on the satellites and
the type of GPS receiver. Both satellites and receivers are prone to timing
errors. Ground stations throughout the world monitor the satellites to ensure
that their atomic clocks are kept synchronized. Receiver clock errors depend
upon the time oscillator provided within the unit. However, clock errors can
be calculated and then eliminated once the receiver is tracking at least four
GPS satellites.

19

Time Application

Many synchronization systems use GPS as a source of accurate time; one of
the most common applications of this use is that of GPS as a reference clock
for time code generators or NTP servers clocks [GPS01].

Conclusion

GPS time is much more accurate than atomic clocks, however the reception
of GPS signals requires an open sight of the sky (section 2.2.3 provides more
details), contrariwise to a radio clock receivers. As in case of the Nomadic
Positioning Service, we require the most accurate, synchronized and high-
resolution clock as possible, we select the GPS-based time source as the
most appropriate one.

2.5 Service Oriented Architecture

This section presents the Service Oriented Architecture (SOA) used by the ex-
isting implementation of the Nomadic Positioning Service. Particularly, the
Mobile Service Platform (MSP) used by our Nomadic Positioning Service is
based on a Jini Network SOA. Generally, SOA allows software components
to publish, invoke and discover services on a network. SOA also allows a
software programmer to model programming problems in terms of services
offered by components anywhere over the network.

In SOA we distinguish a Service provider, a Service requestor, and a Service
registry (see figure 2.4). The Service provider is responsible for publishing a
description of the service to the Service registry. The Service registry is a
service repository and it provides the capability of discovering services by the
Service requestors. The Service requestor is responsible for discovering and
invoking the service. The Service requestor may bind to the service obtained
from the service registry and to be used by it [SOA01].

2.5.1 Jini Network

Introduction

Jini network technology provides a flexible infrastructure for delivering ser-
vices in a network and for creating spontaneous interactions between service
provider and their users (i.e. clients), regardless of their hardware or software

20

Service Requestor Service Provider

Service Registy

Bind the Service

Publish the Service
Description

Figure 2.4: SOA Architecture

implementations. Jini technology can be used to build adaptive networks that
are scalable, evolvable and flexible as typically required in dynamic comput-
ing environments [JIN01].

Architecture

The Jini architecture is composed of a Lookup Service (SOA’s Service reg-
istry), a Jini Service (SOA’s Service provider) and the Jini Client (SOA’s
Service requestor). Figure 2.5 presents a typical service registration and re-
quest procedure.

Client Service Provider

Lookup Service

1) Service provider
 seeks a lookup
 service

2) Service provider register
 its service with the

lookup service
3) A client
requests a
service to the
lookup service

4) The client interact
directly with the
service provider

Figure 2.5: Jini Architecture

The Lookup Service (LUS) keeps track of the Jini services and provides the
proxies to communicate with the service. The LUS is itself a Jini Service as
well.

21

The Jini Services are registered with the LUS and are capable of being in-
voked through their public interface defined via a Java remote interface.
The underlying system that allows Jini services to communicate is a Remote
Method Invocation (RMI). The Jini Client requests proxy from the LUS in
order to invoke particular Jini Service.

2.5.2 Jini Surrogate

The goal

In order for a hardware or software component to join in a network of
Jini technology-enabled services, it must satisfy several critical requirements.
Particularly, it must be able to participate in the Jini discovery and join pro-
tocols and it must be able to download and execute classes written in Java
programming language. In addition, it may need the ability to export classes
written in Java programming language so that they are available for down-
loading to a remote entity. In our case, the Nomadic Positioning Service can
be executed on PDAs that cannot satisfy those requirements; therefore, the
Nomadic Positioning Service cannot participate directly in a Jini network.
To overcome that, the Jini Surrogate Project provides a solution with the
aid of a third party co-called Jini Surrogate for a service ’representative’. It
allows the nomadic service to participate in a Jini network, while maintaining
the plug-and-work model of Jini network technology [SUR01].

Architecture

The Surrogate architecture is composed of four components: the device, the
Surrogate Host, the Interconnect and the Jini Network. The term device
refers to a hardware or software component that is not capable of directly
participating in a Jini network. The Surrogate Host is a framework that
resides on the host-capable machine and provides a Java application envi-
ronment for executing the Surrogate. The Interconnect is the logical and
physical connection between the surrogate host and the device.
The Jini Surrogate provides a service gateway that enables limited Java de-
vices to hook into a Jini network, for this the Jini Surrogate has to implement
a interconnect protocol which includes the interconnect-specific mechanisms
for services discovery, retrieval of the surrogate, and aliveness [SUR02].

The Figure 2.6 presents the role of the Surrogate for the communication
between the provider of the service on the mobile device, e.g. Nomadic Po-

22

Mobile Device’s
Service Provider

interconnectClient Surrogate Host

Lookup Service

Jini Network

Figure 2.6: Surrogate Architecture

sitioning Service provider, and other components of the Jini Network.

2.6 Nomadic Positioning Service

The implementation of the Nomadic Positioning Service is called MSP Loca-
tion Service; the Nomadic Positioning Service is just its conceptual name.

This section presents the main components of the MSP Location Service and
their communication within the Jini network. The MSP Location Service is
composed of a MSP Location Client, a MSP Location Server, the Surrogate
Location Service (that runs on the SurrogateHost) and the Lookup Server.

2.6.1 MSP Location Server

The MSP Location Server publishes his position on the Surrogate Location
Service. That is because as we explained in section 2.4.2, the server is de-
ployed on PDA platform and therefore cannot meet requirements to be a
part of the Jini network.

Figure 2.7 presents the time sequence diagram of the MSP Location Server
registration and publishing a service through SurrogateHost and Lookup
server. The interconnect protocol implemented by our Nomadic Positioning
Service is a HTTP-interconnect which use HTTP request to send message
through the Interconnect. It uses two modules one, named IO module, for the
mobile device to communicate with the Interconnect and the other, named
interconnect module, for the Surrogate to communicate with the Intercon-
nect (which is the logical and physical connection between the Surrogate
Host and the device).

23

MSP Loc Server Surrogate Host Lookup Server

request a surrogate activation

activation confirmed,
surrogate connexion returned

surrogate
activation

multi/uni-cast discovery request

lookup server discovered

surrogate host
discover a

lookup serverkeep-alive request

keep-alive response

location update message

keep-alive request

keep-alive response

service register request

service registred confirmation
lease received

lease renewal

lease renewed

store service
 proxy & service

attributes

leaste update

keeping
surrogate

alive

sending its
new location

keeping
surrogate

alive

Figure 2.7: Service publishing procedure

2.6.2 Surrogate Location Service

The Surrogate Location Service registers the MSP Location Server’s service
to the Lookup Server and then it provides Location of the MSP Location
Server on the Jini network for the service users.
A Surrogate Location Service is a Jini-based service that runs on the Sur-
rogateHost. Particularly, it allows the mobile device to provide a service on
the Jini network. It implements a HTTP-interconnect protocol which allows
it to communicate with the Interconnect.

2.6.3 MSP Location Client

The MSP Location Client allows a service user to obtain service, which would
mean gathering a mobile device’s position. The MSP Location Client can
run on a mobile or fixed device, however for now only a J2SE implementation
is available.

MSP Client Surrogate Host Lookup Server

Discovery of a
lookup server

service method invocation request

service reply

Service discover request

Service found

Discovery of a
service

Invocation
of a service

method

Multi/Uni-cast discovery request

Lookup server discovered

Figure 2.8: Client start-up time sequence diagram

24

Figure 2.8 presents how the MSP Location Client discovers and invokes the
service through the Lookup Server and the SurrogateHost.

2.6.4 LookupServer

The Lookup Server advertises available nomadic services. When a service
provider publishes a service, it sends its service proxy-object and service
attributes to the Lookup Server, and the latter provides this service object
to any client that requests a matching service.

25

Chapter 3

DESIGN OF NOMADIC
TIME-BASED POSITIONING
SERVICE

3.1 Introduction

This chapter presents a design of the Nomadic Time-Based Positioning Ser-
vice. Based on the background research and the study of the existing No-
madic Positioning Service, we propose its redesign such that it integrates
time-awareness for the service provider and service users (as we indicated in
section 1.4.2).

This chapter starts with an introduction on existing design of the Nomadic
Positioning Service; i.e., design of the service before integrating the time-
awareness into it. Then we define the set of requirements for the Nomadic
Time-Based Positioning Service and based on them we propose a high-level
service design; representing service architecture with all internal components
and their interactions. The evolution of the existing Nomadic Positioning
Service into the Nomadic Time-Based Positioning Service, needs to be done
while keeping the existing design features and adding some new features. We
achieve that by firstly answering the research questions (indicated in section
1.5).

Figure 3.1 presents the actual design of our Nomadic Positioning Service.
Based on the figure, we can further easily identify all the necessary modi-

26

Surrogate Host LookupServerService Provider Service User

Nomadic Positioning Service

Fixed or Mobile
Device

Host Capable
Machine

Host Capable
Machine

Mobile device

2.5G or 3G
Network

Internet Internet

Nomadic
Positioning

Service

Location
Service

Surrogate
registered

to

Figure 3.1: Nomadic Positioning Service

fications leading towards the time-awareness of this service. The Nomadic
Positioning Service is composed of at least two components: the Surrogate
Host and a Service Provider. There can be multiple surrogate instances for
each Service Provider, and any surrogate instance is executed in the Surrogate
Host. Besides the Nomadic Positioning Service itself, two more components
are needed to access and use the service: a Lookup Server to publish the
service and a Service User to actually use it. The connection between the
Service Provider and the Surrogate Host use the Interconnect protocol im-
plementation of the Mobile Service Platform.
The service that is provided by the existing Service Provider includes only
message location including only the location coordinates of the Provider and
his movement since last known position. The Surrogate Host registers its
service to the Lookup Server by storing there its service proxy and service
attribute, and then it provides Provider’s location event to the Service User
through the RMI.

3.2 Requirements

In this section, we define the requirements for integration of time-awareness
into the existing Nomadic Time-Based Positioning Service, based on the
problems definition (section 1.3.4) and the research questions (section 1.5).

27

3.2.1 User/Provider Clock Synchronization

Research question #1: What is the most efficient way to accurately and re-
liably synchronize service user’s and nomadic service provider’s clocks?

In our background studies, we have made an overview of three possible time-
awareness techniques: the NTP, the Atomic Clock and the GPS.

Advantage Disadvantage

GPS

-available everywhere on
earth
-provides position & time
-time accuracy of receiver
around 10E-7 second

-sight of sky required
-specific hardware receiver
required

Atomic Clocks
-no sight of sky required

-specific hardware receiver
required
-time accuracy of receiver
around 10E-6 second

NTP

-no specific hardware receiver
required

-only accurate on symmetric
latency network

Table 3.1: Time-source comparison

The NTP protocol is not accurate enough while implemented over the wire-
less communication link due to the lack of guarantees of a symmetric delay
(see section 2.3.1 for more details). This was the only time-source studied by
us, which is software-based and therefore does not require dedicated hard-
ware.

The Atomic Clock would not provide an accurate enough time-source, as
required by the Nomadic Time-Based Positioning Service (see section 2.3.2
for more details). Moreover, the only significant advantage of this technique
over the GPS-based would be that the radio clock receiver does not require
a sight of the sky as for GPS.

28

The GPS appear to be the most suitable technique for implementing the
time-awareness at the service user and provider sides in the Nomadic Posi-
tioning Service. Even if GPS requires dedicated hardware, i.e., GPS receiver
for mobile devices, its accuracy is much higher than NTP or an atomic clock.
As we indicated earlier, most of GPS receivers have time accuracy around
100 nanoseconds (comparing to radio clock accuracy of around 1 millisec-
ond). However, the more significant disadvantage of the GPS-based solution
is a weak or even lack of signal reception in building or anywhere, where
there is no direct sight of the sky.

As we said while providing the background information on the Time objective
(section 2.3), the problem with synchronization of the Nomadic Positioning
Service providers and users, will be dealt with in a separate student’s as-
signment [LBP01]. In this section, we just deal with time-awareness, which
mean provisioning of timestamps on the service user and provider sides.

3.2.2 Timestamp integration

Research question #2: What is the most efficient way to integrate timestamp
in locations events?

The timestamp of location event and time estimations is one of the key ele-
ments of our Nomadic Time-Based Positioning Service with the user/provider
time synchronization. This question could be divided in two sub-questions:

1) What time source should be used?
2) How to integrate the time-awareness in the existing MSP Location Service
architecture?

Answer 1) Place Lab’s API (section 2.2.2) allows getting the timestamp from
location estimation. However, after closely analyzing its spotter’s source
code, we noticed that the time source of this timestamp is different and de-
pends on the type of the spotter used. While using a WLAN spotter, Place
Lab will use the device’s system clock as a time source through the well-
known J2SE version 1.4.2 class ”System”, (method currentTimeMillis). This
method is known for giving an imprecise time depending on current system
clock setup. In case when Place Lab uses a GSM spotter, the time source
will be based on GSM antenna time clock, if GSM network supports it, and
on the mobile device’s system clock otherwise.
Hence we conclude that using a GPS-based spotter will guarantee having the
most precise time source, because the GPS time will be used (if received),

29

and the mobile device’s system clock otherwise. We indicate GPS as the
most accurate time-source that should be used in the Nomadic Time-Based
Positioning Service. See [LBP01] for further details.

Answer 2) The most appropriate way to integrate the timestamp in the exist-
ing MSP Location Service is to store it in the existing location object holding
the location coordinates. This way the timestamp information is sent in the
same message as the location coordinates, hence ”an efficient bandwidth us-
age” design requirement is met.

3.2.3 Time-awareness for Service User

Research question #3: What is the most efficient way to log all time-aware
location events and provide them on user’s request?

Again, this question we divide in two sub-questions:
1) What is the most efficient way to save all location-time events?
2) What is the most efficient way to provide location-time event to the ser-
vice user?

Answer 1) To log all location-time events, we proposed development of Trace-
Store service, which will register itself as a listener to the Nomadic location
service of every mobile device running the Nomadic Time-Based Positioning
Service. Each time a new location-time event is sent by a mobile device, the
TraceStore will be notified by the Jini service architecture and it will store
this event in its database. All information regarding the location-time event
will be stored, namely: the mobile device’s ID, the location expressed in 2D
coordinates, the movement since the last known location, the location’s ac-
curacy and finally its timestamp.

Answer 2) As the location service’s client already needs to make use of the
Jini architecture, the best way to provide him with the location updates is to
use the same architecture as for the TraceStore’s service. This way we keep
the existing location service design features (see section 3.2.6 for details).

Summarizing, the TraceStore’s service must provide to the Service User:
- The list of all known mobile devices providing nomadic location service
- All traces of a particular mobile device for a specified interval of time in
the past
- The last known position of a mobile device providing nomadic location ser-
vice

30

We provisioned also one additional method implemented by the TraceStore’s
service returning the ID of the current TraceStore instance. These methods
may be useful to identify an instance of TraceStore, if there is more than one
TraceStore service instance running in Jini Network.

For implementation details on these methods, see javadoc (JiniTraceStore-
Service class).

3.2.4 Including position accuracy

As we described in the subsection revealing problems of the existing No-
madic Positioning Service (section 1.3.4), the mobile device’s location should
be known as along with the location accuracy. As in the timestamp integra-
tion subsection (section 3.2.2), in this section firstly we define the location
information source, then the location’s accuracy, then we present how we will
integrate this data into the Nomadic Time-Based Positioning Service.

Place Lab allows retrieving the location’s accuracy through its tracker. The
location accuracy determination is relative to the location estimation algo-
rithm, therefore once the tracker is implemented in the nomadic location
service, the Place Lab API can be used to retrieve the location’s accuracy.

As for the timestamp integration, the best way to integrate the location
accuracy is to store it in the existing location object holding the location
coordinates. This way the information is sent in the same message as the
location coordinates so the design feature requirements on ”an efficient band-
width usage” is met.

3.2.5 TraceStore Specifications

In this section, we define the TraceStore service specifications, which are
necessary to meet the design features requirements.

Storage

The TraceStore is required to log and store multiple location-time events
originating in the nomadic positioning-time service provider. To meet this
requirement we propose use of a database system such as mySQL. We indicate
two following reasons of it. Firstly, this type of information storage has the
best performance for an open-source database system. Secondly, it allows

31

to externalize the storage system of the TraceStore, which further allows
to share processing resources, such that as soon as the TraceStore will deal
with a huge amount of location events data, accessing the information will
be much more faster that any other kind of storage system.

Privacy

The TraceStore access should be controlled as soon as it is use for a real
application, because the user location-time data is always a privacy sensitive
data. This requirement can be met by setting permission control to TraceS-
tore service and allowing access only for a limited, trusted set of users. For
the service evaluation purpose, we granted all permissions for everybody.

3.2.6 Design features preservation

Research question #4: What’s the most efficient way to redesign the existing
Nomadic Positioning Service while keeping its design features such as a) an
efficient bandwidth usage, b) a numerical scalable architecture and c) lack of
need for additional configuration when new devices come online ?

This question we answer in sub-questions a) to c).
Answer a) An efficient bandwidth usage is required by the Nomadic Position-
ing Service because the connection over the wireless (2.5G or 3G) network
is, in most cases, relatively expensive in terms of communication resources
as in terms of money. Hence, when data containing location information is
sent from the mobile device to the Surrogate Host through the interconnect
implementation of the Mobile Service Platform, this data are compressed
to reduce its size to minimum. That is why we propose to integrate the
timestamp and location’s accuracy into the existing location object instead
of sending additional data over the wireless link (we provided details in sec-
tion 3.2.2 and 3.2.4).

b) The numerical scalable architecture requirement will be partly conserved
by use of the Jini architecture. The TraceStore’s service is provided on the
Jini network that allows for dedicating a machine only to this service. If
a higher level of scalability will be required, running multiple instances of
TraceStore to distribute the processing time may be possible with some im-
provements (see section 3.5.1 for more details).

c) The lack of need for an additional configuration when new devices come
online is implemented through the Jini architecture. On the service provider

32

side, as the TraceStore automatically register as listener to all location service
providers available, so this feature is conserved. On the service user side, as
long as the service client discovers the nomadic service and the TraceStore’s
service through a multicast discovery request, this feature is also conserved.

3.3 MSP Location Client Redesign

In our Nomadic Time-Based Positioning Service, the Client should not only
to be connected to the Jini Location Service, but also to the Jini TraceS-
tore’s Service. This should be made by a multicast request so the TraceStore
address would not need to be known directly by the client.

The MSP Location Client should implement the four TraceStore’s service
methods (section 3.2.3). We need to note that this client will be used mainly
to demonstrate and validate the functionality of the Nomadic Time-Based
Positioning Service, rather than to be used in a real service. This is because
in reality the MSP Location Client should use the MSP Location Server’s
service or TraceStore’s service transparently to the human user.

3.4 High-level Design

This section presents a design for the Nomadic Time-Based Positioning Ser-
vice based on the requirements and TraceStore’s specifications that were
indicated earlier in this chapter (section 3.2).

Surrogate Host Tracestore LookupServerService Provider Service User

Nomadic Time-Based Positioning Service

Fixed or Mobile
Device

Host Capable
Machine

Host Capable
Machine

Host Capable
Machine

Mobile device

2.5G or 3G
Network

Internet

Nomadic
Positioning

Service

Location
Service

Surrogate

SQL DB
connexion

registered
to

Internet

Figure 3.2: Nomadic Time-Based Positioning Service

33

Figure 3.2 presents a design for the Nomadic Time-Based Positioning Ser-
vice, which is composed of at least three components: the surrogate host, the
TraceStore and the service provider (can be multiple). Most of the possible
interactions indicated in the architecture we have already explained in the
section dealing with the design of the Nomadic Positioning Service (section
3.1), so in this section we will only focus on a new features and new interac-
tions.
The location-time message that is sent from the Service Provider to the
Surrogate Host includes location coordinates, movement since last position,
location timestamp and the location’s accuracy. The Surrogate Host sends
location message to both: the Service User, and to the TraceStore that stores
this information and provides it on request (at any time later) to the Service
User through RMI.
The Lookup Server publishes the Nomadic Positioning Service and the Trace-
Store Service, because they register their services to the lookup server by
storing there their service proxy and service attributes. Together they pro-
vide the Nomadic Time-Based Positioning Service.

3.5 Changes to the existing Nomadic Time-

Based Positioning Service

3.5.1 TraceStore-multiple instances

The TraceStore should be able to run in multiple instances to allow to the
mobile devices’ service to subscribe themselves to multiple TraceStore ser-
vices. This further requires the TraceStore redesign and introducing some
features to balance automatically the user load over all TraceStores. Design
of this feature is outside of the scope of this assignment.

34

Chapter 4

EVALUATION

4.1 Introduction

In this chapter, we present evaluation of the design and implementation of
the Nomadic Time-Based Positioning Service against its requirements.

4.2 Requirements Evaluation

The minimum set of requirements indicated in the previous chapter (section
3.2) will be evaluated in this section.

4.2.1 User/Provider Clock Synchronization

This requirement cannot be evaluated because it was not implemented, as it
has been indicated in sections 2.3 and 3.2.1 it will be dealt with in another
student assignment [LBP01].

4.2.2 Timestamp & Position Accuracy Integration

This requirement has been met. The timestamp and the position accuracy
were very well integrated in the existing positioning service, except from the
fact that we observed that the position accuracy value is not well estimated
by Place Lab’s Tracker implementation. Due to some errors in the Place
Lab’s calculation on the location’s standard deviation, the value of the posi-
tion’s accuracy is not valid. This issue is outside the scope of this assignment.

The timestamp and the position’s accuracy information are encapsulated

35

in location-message that is sent from the mobile device through the inter-
connect protocol to the surrogate. This way the efficient bandwidth usage
requirement is conserved.

4.2.3 Time-Awareness for Service User

This requirement has been met. The TraceStore provides very well the time-
awareness for the Service User. The latter can request previous location
of a mobile device through the methods implemented by the TraceStore’s
service. The service will always return the information if it exists. We
observed that TraceStore always returns information to the user even if the
size of the requested information is very huge (hundreds or thousands of
locations). Each request of past locations from a service user is added in the
task queue of the TraceStore service, so if a service user makes thousands
of requests, the service will start to treat all the requests from this user
first. Because the TraceStore should not get overloaded by one user, this
can be a security thread. Hence, we propose that in this particular case, the
TraceStore should add the request from this specific user in the queue with
a lower priority, especially when there are many simultaneous TraceStore
users. This way the TraceStore will serve equally fair for all users even if
it is overloaded. Nevertheless the TraceStore has shown that it could stand
hundreds of simultaneous requests thanks to Jini architecture and it’s Task
Manager which allows the treatment of different tasks in multiple thread.

4.2.4 TraceStore Specifications

Storage

No particular problems were encountered with the mySQL database (version
4.1.14) used for the service evaluation purposes.

Privacy

As we indicated in section 3.2.5, for the evaluation version of the Nomadic
Time-Based Positioning Service all permissions are granted for everybody.
For the prototype version of the service, this issue is not very important.
However, we indicate that the authentication should be added to the service
easily when it is to be used in a real application. This can easily be done by
setting specific Jini permissions on the TraceStore service.

36

4.2.5 MSP Location Client Evaluation

The client does not register to the TraceStore service through the same
Lookup Server discovery as for the Positioning service, and we are fully aware
that this is a shortcoming of our implementation. In our implementation, the
Lookup Server discovery request used by the client is only uni-cast, so the
client always needs to know the Lookup Server address.

4.2.6 Design features Preservation

An efficient bandwidth usage

The bandwidth usage between the mobile device (which provides its location-
time events) and the Surrogate Host has been conserved as much as possible.
We added only two additional values in the location message; the times-
tamp and the accuracy of the location estimation. Those two values are
then compressed with other data through the MSP interconnect protocol
implementation and send as one data to the Surrogate Host.

A numerical scalable architecture

The system scalability has not changed along the implementation of the
TraceStore as an additional service. The Surrogate Host can handle many
surrogates, but it is necessary to add another Surrogate Host to handle more
surrogates if the number of service providers becomes too large, just like for
the Nomadic Positioning Service. The TraceStore can be overloaded at its
client side or its provider side. At its client side, this would mean that the
TraceStore’s gets too many location events logs, and on the provider side
it would mean that it has to serve too many requests from service users.
In both cases, TraceStore should be multiplied in the system, which would
require that the TraceStore implements a multiple instances feature (section
3.5.1).

Lack of need for additional configuration when new devices come online

As the client does not discover the TraceStore’s Lookup Server through the
multi-cast request, but only through a uni-cast request, the TraceStore’s
address has to be known by the service user. For this reason, this design
feature was not kept (details in section 4.2).

37

4.3 Implementation Problems/Errors Encoun-

tered

One of the problems was that the client was not implemented through one
lookup server discovery request but by two. First request is needed for dis-
covering the Nomadic Positioning Service and the second for discovering the
TraceStore service. We are fully aware that the best way to implement an
integrated service would be by using only one lookup request. This error
requires the service client knows the Lookup Server address (otherwise, it
will not be able to connect to the TraceStore’s service). To fix this, the
client should connect to the MSP Location Service and the TraceStore Ser-
vice through the same Lookup method. More precisely, the discovery of the
TraceStore service should be integrated in the ’discoverAndLookup’ method
of the ’Client’ class.

Another problem was that due to some errors in the Place Lab’s calcula-
tion of the location’s standard deviation, the value of the position’s accuracy
is not valid. As soon as another Tracker for the Nomadic Positioning Service
is implemented, the ’WiFiTracker’ class which contains the calculation of the
location’s accuracy will have to be re-implemented because the calculation
of the location’s accuracy depends on the positioning estimation algorithm.

4.4 Conclusion

The evaluation of the Nomadic Time-Based Positioning Service shows that
the TraceStore can satisfy the requirements set in the Design chapter even
if the current implementation does not satisfy them perfectly. Due to some
problems in the implementation part (as mentioned in the section 4.1.2 and
4.1.5), the location’s accuracy is successfully sent from the mobile device
to the Surrogate but it is not calculated correctly. Moreover, the discovery
of the Lookup Server for the TraceStore service does not actually support
multicast. Those two requirements were not satisfied in our development, but
they can be easily fixed by re-implementing these parts; no system redesign
necessary.

38

Chapter 5

CONCLUSION

5.1 Introduction

In this report, we presented development of Nomadic Time-based Positioning
Service that allows the improvement of all application based on the Nomadic
Positioning Service by taking into consideration time as an additional dimen-
sion. In this chapter we present some value-added services, recommendations
for future work and a final conclusion.

5.2 Value-added service

Our Nomadic Time-Based Positioning Service may be used as a standalone
service or as a building block in another application. In the first case, an
example of a value-added service that enhances the Nomadic Time-Based
information is the mapper service developed in [NPS01]. In the second case,
it is a service enhanced by the use of the Nomadic Time-Based Service as
a component. An example can be an enhanced calendar application that
reminds to user diverse events (such as an appointment) in a delay relative
to the time needed to get to the event’s location.

The knowledge of the past positions of a service provider can allow for better
prediction of its average speed, its destination and therefore its next action.
It also gives the possibility to know if two service providers have met in loca-
tion and time. Potentially, almost all existing applications using the Nomadic
Positioning Service can be improved by the use of our Nomadic Time-Based
Positioning Service.

39

5.3 Future Work

5.3.1 Keeping Identification of mobile device through sessions

An important feature that would enhance the service, would be a function-
ality enabling a mobile device that goes offline and then comes online again,
being identified as one and the same mobile device. In the existing Nomadic
Positioning Service, the ID of the mobile device is the timestamp of a mo-
ment when it has came online. A better ID would be its MAC address, in
this way for a mobile device that was already online in the past and which
comes online again, all the location estimation of device’s new session would
be merged with its old session.

5.3.2 TraceStore multiple instances

If the Nomadic Time-based Positioning Service has to be deployed on a very
large scale, the multi-instance TraceStore feature should be developed, as
mentioned in 3.5.1.

5.4 A portable solution

The Nomadic Time-based Positioning Service offers a full portable solution
that can potentially run on almost any device and operating system that
support Java standard, Place Lab library and wireless connectivity. Each
component has different requirements. The TraceStore components can run
on any J2SE platform implementation that can join a Jini Network and
that have connectivity to a SQL database. The Service provider has to
support J2ME, Place Lab library and wireless connectivity. The Service
User, the Lookup Server and The SurrogateHost have to support J2SE and
Jini Network connectivity.

5.5 Conclusion

The goal of this student assignment - the integration of Time-Awareness in
the existing Nomadic Positioning Service was successful. All research ques-
tions were answered, and all requirements were reached by the design part.
The two requirements that were not reached due to their unsuccessful im-
plementation could be fixed easily by a simple re-implementation, no further
design is required.

40

The user and provider time synchronization could not be evaluated because
its development is still ongoing; please refer to [LBP01] MSc thesis for more
information.

The integration of Time-Awareness in the existing Nomadic Positioning Ser-
vice enables a new dimension of possibilities in positioning service-based ap-
plications. Very valuable information can be deducted from the TraceStore’s
history, especially if the positioning service based application has linked in-
formation with the TraceStore’s history, e.g. a list of contacts with their
known mobile devices ID.
This new generation of service is possible with Location and Time-Awareness.
Further service development based on the Nomadic Time-based Positioning
Service is highly encouraged.

41

Appendix A: TraceStore Class Diagram (only public class are shown)

42

Appendix B: Nomadic Time-based Positioning Service Source

The source code of this assignment is available through the CVS server.

Readonly access to the CVS repository is possible using the commands
below (no password for readonly):

”cvs -d :pserver:anonymous@cvsmsp.ewi.utwente.nl:/local/cvs/msp login”

More information about the ongoing development of the MSP and MSPLoca-
tionService is available at the following URL:

http://janus.cs.utwente.nl:8000/twiki/bin/view/MSP/

43

Bibliography

[AWA01] AWARENESS: Context AWARE mobile Network and Services
http://www.freeband.nl/project.cfm?language=en&id=494

[AWA02] Overview of the AWARENESS project
http://www.freeband.nl/project.cfm?language=en&id=842

[NPS01] Nomadic Positioning Services for a Mobile Service Platform
E.A.M. Schoot Uiterkamp, MSc thesis, University of Twente,
the Netherlands, 2005

[LBP01] Location Based Performance Measurements, Ger Inberg, MSc
thesis, University of Twente, the Netherlands, on going work

[SLA01] a Slashdot article.
http://hardware.slashdot.org/hardware/05/10/04/1418206.shtml?tid=193

[J2ME01] Java 2 Platform, Micro Edition - Wikipedia, the free ency-
clopaedia http://en.wikipedia.org/wiki/J2ME

[JCP01] Java specification for requests #179
http://www.jcp.org/aboutJava/communityprocess/review/jsr179/

[GPS01] Global Positioning System - Wikipedia, the free encyclopaedia
http://en.wikipedia.org/wiki/GPS

[GPS02] How does GPS work ? http://www.nasm.si.edu/exhibitions/gps/work.html

[PLA01] Place Lab - Quick Start
http://www.placelab.org/toolkit/quickstart.php

[DEV01] Deviceforge.com article
http://www.deviceforge.com/articles/AT8606455669.html

[IRS01] Place Lab publication IRS-TR-05-003
http://www.placelab.org/publications/pubs/IRS-TR-05-003.pdf

44

[INT01] Algorithms accuracy comparison.
http://seattle.intel-research.net/people/jhightower/pubs
/hightower2004particle/hightower2004particle.pdf

[SOA01] Service-oriented architecture using Jini
http://searchwebservices.techtarget.com/

[JIN01] Jini - Wikipedia, the free encyclopaedia
http://en.wikipedia.org/wiki/Jini

[JIN02] Jini (TM) Architecture Specification
http://www.jini.org/nonav/standards/davis/doc/specs/html/jini-
spec.html

[SUR01] surrogate: Surrogate Project.
http://surrogate.jini.org

[SUR02] Jini Surrogate Architecture
http://surrogate.jini.org/sa.pdf

[NTP01] Executive Summary: Computer Network Time Synchroniza-
tion
http://www.eecis.udel.edu/ mills/exec.html

[NTP02] Network Time Protocol - Wikipedia, the free encyclopaedia
http://en.wikipedia.org/wiki/Network Time Protocol

[ATC01] Atomic clock - Wikipedia, the free encyclopaedia
http://en.wikipedia.org/wiki/Atomic clock

[MPM01] Dimitri Konstantas, Aart Van Halteren, Richard Bults,
Katarzyna Wac, Ing Widya, Nicolai Dokovsky, George
Koprinkov, Val Jones and Rainer Herzog, ”Mobile Patient
Monitoring: the MobileHealth System” proceedings of Inter-
national Congress on Medical and Care Compunetics, NCC,
The Hague, June 2-4, 2004

45

