Ubiquitous Inference of Mobility State of Human Custodian in People-Centric Context Sensing

Mattia Gustarini, Katarzyna Wac Institute of Services Science Quality of Life Group QOLI

Motivation

- Some people-centric sensing challenges
 - capture of person's mobility
 - understanding of context changes
 - preservation of user privacy

Goal

- Infer **mobile-fixed context** of the human custodian
 - accurately and efficiently (battery)
 - enable dynamic changes of the sensors' duty cycle length

Mobility Sensor Raw Data Collection

Mobility Sensor Raw Data Collection

Mobility Sensor Derive 3 features

Mobility Sensor Derive 3 features

Features

Mobility Sensor

Alive sessions c.

Derive 3 features

Features

Median life time of cells

Mobility Sensor 7 scans Derive 3 features

Features

Median life time of cells

Average euclidean distance of signals

Mobility Sensor 7 scans Derive 3 features

Features

Median life time of cells

Average euclidean distance of signals

Average fast wavelet transform signal range

Mobility Sensor 7 scans Derive 3 features

Features	Fixed	Mobile
Median life time of cells	╋	
Average euclidean distance of signals	-	╉
Average fast wavelet transform signal range	-	╉

FACULTY OF ECONOMIC AND SOCIAL SCIENCES Department of Management Studies

DE GENÈVE

Mobility Sensor Tree Classifier

FACULTY OF ECONOMIC AND SOCIAL SCIENCES Department of Management Studies

Mobility Sensor Tree Classifier

3 features

FACULTY OF ECONOMIC AND SOCIAL SCIENCES Department of Management Studies

Preliminary Experiments

- Android phone
- I user, 5 days, I phone operator
- Mobility Sensor vs. accelerometer, network location and GPS
 - mobile and fixed states predictions
 - battery consumption
- User labeled the data (ESM with widget)

- 539 predictions
 - 52% Fixed
 - 48% Mobile
- 750 battery measurements

FACULTY OF ECONOMIC AND SOCIAL SCIENCES Department of Management Studies

FACULTY OF ECONOMIC AND SOCIAL SCIENCES Department of Management Studies

Identified Problems

- Network coverage
- When **fixed**, network cell ping / pong
- When **mobile**, minimum number of cells

Ongoing Work

- Improve the algorithm
- Large case study involving real users
 - Mobile phone heterogeneity
 - neighbor CellIDs not always available
 - hardware battery consumption details
 - Experience Sampling Method

Thank you!

Mattia Gustarini mattia.gustarini@unige.ch

Katarzyna Wac katarzyna.wac@unige.ch

http://www.qol.unige.ch

