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Abstract

In the estimation of selectivity, many models assume that data is uniformly distributed, which is not true for
many applications. In this paper, we discuss a generalized selectivity model, the so-called lαβ-model which is
independent of the data distribution. The model predicts the fraction of a relation that should be selected in
order to process a query. We have evaluated this model for different data distributions in order to determine the
accuracy of this model. Data distributions that have been considered are the uniform distribution, the normal
distribution, the exponential distribution, Pearson’s distribution, and Zipf’s distribution. From our experiments,
it appears that the lαβ-model predicts the selectivity well, especially for the skewed distributions. Applying the
lαβ-model on different fragment sizes of a relation yields quite acceptable selectivity values as well.
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1 Introduction

Efficient and effective processing of large amounts of data is of crucial importance in most computer applica-
tions, from administrative data processing to library information retrieval systems. Since the first and most
important applications were produced in administrative areas, research in efficient and effective processing
of data was primarily focussed to meet their performance requirements. These efforts have resulted in query
optimizers that perform quite well. An optimizer needs, among others, the selectivity of a query, i.e., the
relative number of records that qualifies to a query, in order to generate an efficient query execution plan.
The problem of estimating reliable selectivity values has extensively been studied for standard applications
under a number of assumptions valid for these applications. For example, many efforts devoted to the
selectivity problem assume that data is uniformly distributed, which is not the case for many (emerging)
advanced applications. For example, in the field of text retrieval systems, Zipf distribution of data [Zip49]
is the norm.

In [BCBA01, BCBA, Blo02], a selectivity model — in the context of information retrieval — is derived that
is independent of a particular data distribution. This model, called the lαβ-model, is able to estimate the
selectivity of a query in a fast way by means of a mathematically closed formula. Though looking like a
so-called parametric model, our model does not depend on a specific distribution function as becomes clear
in the next sections. In this paper, we generalize the concepts behind the lαβ-model and report on the
accuracy and usefulness of this formula. Generalization of the concepts has as advantage that the model
directly can be used for other applications.

We consider a sequence C of lists L1,L2, ....L|C | of some arbitrary length |C |. An element in a list is called
an entity e. In a relation COLL, we store pairs (ei,Lj), indicating that entity ei is a member of Lj

1,2 . Let

1As becomes clear, actually only the ei column of COLL is of interest and the Lj column may be of a different type in practice
as well. However, we use this notation for simplicity.

2In an information retrieval context, each Li can be regarded as a document, and an entity as a term. The pair (ei,Lj) can
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a query be defined as the join between an unary relation Q, consisting of entities, and COLL. The problem
is to estimate (beforehand) the size of the join result between COLL and Q. We have used the lαβ-model to
estimate the size of the join result and analyze the accuracy of this model. Note that the size of the join is
the number of pairs of COLL that satisfy Q. The selectivity of Q is this number of pairs selected by Q in COLL

relative to the size of COLL, i.e., the fraction of COLL selected by Q.

We have performed a series of experiments for a number of well-known data distributions. The data dis-
tributions that we have considered are the uniform distribution, the normal distribution, the exponential
distribution, the Pearson distribution, and the Zipf distribution. For each distribution, we ran a group of
queries with different length. Then, we measured the selectivity of each query and compared it with the
estimated selectivity obtained by applying the lαβ-model. From our experiments, it appears that these two
selectivities, the measured ones and the estimated one computed by the lαβ-model, match quite well.

We have also performed these experiments for fragments of different size. Considering different fragments
is interesting from a performance point of view (also see Section 2). For example, in the field of information
retrieval 80% of the queries can be handled by 20% of the data. If we choose a proper fragment, then we can
handle most of the queries with a very limited data set. From our experiments, it turns out that the lαβ-
model also works quite well for different fragments, especially for skewed distributions, like the exponential,
Pearson, and Zipf distributions.

As in [BCBA01, BCBA, Blo02], we assume that the query and data distributions are known a priori. This
assumption appears to be reasonable for a number of applications, such as in the field of information retrieval,
data warehousing. Furthermore, the query and data distributions are assumed to be equal and the query is
assumed to consist of unique entities.

1.1 Related work

In the literature, a large number of efforts has been reported on the prediction of selectivity in different
contexts and under different assumptions [Car75, Yao77, IB86, LNS90, CR94, IP95, GGMS96, PIHS96,
CMN98, CMN99]. Roughly two directions can be distinguished in the prediction of selectivities. Research
in the first direction has been focussed to the prediction of the number of page or block accesses, to retrieve
τ tuples from R tuples which are randomly distributed on B blocks. This problem has been extensively
investigated leading from open [Car75] to closed mathematical formulae [Yao77] for predicting the selectivity.

The second research direction mainly focuses on the prediction of intermediate join or selection result
sizes. This area has also been subject to research extensively and can be divided into four categories: non-
parametric, parametric, curve fitting, and sampling. We refer to [CR94] for a more detailed description of
each of these.

The topic of this paper is the evaluation of the lαβ-model. This model fits in the second research direction.
However, this model differs on two fundamental points compared to the above-mentioned categories. First,
the model allows to estimate the selectivity for a fragmented database. We have extensively evaluated this
capability of the model. We note that fragmentation is required for applications, in which the selection of
a proper fragment size is crucial (see Section 2 for a number of examples).

Second, the lαβ-model we propose in this paper to estimate the selectivity for fragmented databases, does
not fit very well in the categorization typically used in the second research direction. The lαβ-model is not
a parametric, sampling, curve fitting, or non-parametric method, or at least not in the usual sense. Our
model relies on two parameters that are computed from the data distribution and it can be regarded as a
combination of a non-parametric and a parametric approach [BCBA].

Finally, we want to point out that a notion of the costs related to fragmentation might be of use in top-N
query optimization [CK98, FSGM+98, CG99, DR99], multi-query optimization [CKSA96], and distributed
database query optimization [HKWY97]. The relationship between our research and these topics becomes
more clear in Section 2.

be considered as term ei appears in document Lj .
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COLL(ent , entlst) (1)

Frequency(ent , freq) (2)

Q(ent) (3)

FragEnt(fno, ent) (4)

Figure 1: Basic schema definitions.

1.2 Outline

The remainder of this paper is structured as follows. First, we discuss our problem in more detail. Then, we
present our selectivity model in Section 3. In Section 4, we discuss a number of standard data distributions.
In Section 5 and Section 6, we present the experimental setup and the results that we have obtained,
respectively. Finally, Section 7 concludes the paper.

2 Problem statement

The storage of integrated data is rapidly growing, especially in the field of data warehouses. This develop-
ment supports the progress of a number of advanced applications, such as data mining, decision support
systems, multi-media databases. To meet the performance demands of these applications, a widely used
strategy is to exploit main-memory capacity by loading the partition of the data in the main memory that
is most beneficial.

A similar strategy is applied in the field of information retrieval systems. In these systems, each document
is indexed by a large number of terms. All indexed terms might be stored in relation COLL, which is very
large. In general it is not efficient to store the whole relation COLL in main memory for several reasons. One
reason is that there is not enough space in the main memory. Another reason is that the indexed terms as
well as queries on these terms are distributed according to the rule of Zipf, and therefore a relatively small
partition of COLL is sufficient to handle the major part of the queries on COLL.

Therefore, a practical need exists for selectivity models that are capable of predicting the selectivity of a
query for different data distributions and fragment sizes.

In the following, we organize our discussion in an abstract manner. Let us consider the following four key
relations (see Figure 1):

Entity-list pairs [Expr. 1] Each time an entity, ent , occurs in a list, entlst , an ent-entlstpair is recorded
in the relation COLL. As mentioned before, this relation, which actually is an inverted list, is grouped
by entities, and then ordered on ascending group count.

List frequencies [Expr. 2] The Frequency relation contains for every entity, ent , its list frequency, freq .
The freq of an entity is the number of lists that ent occurs in and equals the group count of the ent
in COLL. This relation can be seen a degenerated histogram, having bin-width 1.

Query [Expr. 3] This relation is nothing more than a set of entities. In practice this relation is constructed
by the application or results from another (branch in the same) query expression.

Fragmentation index [Expr. 4] This relation, in practice, serves as an index to find the fragment to
which an entity, ent , belongs. In our experimental setting, we use this relation for a different purpose
as becomes clear in Section 5. For each entity ent in entlst , this relation contains a tuple < fno, ent >,
where fno ∈ {1, 2}.

In Figure 1, we listed these relations in a more concise form and in Figure 2 the relationships between these
relations are depicted.

Let us assume that we are only interested in the m tuples of relation Frequency with the lowest freq values
and their corresponding tuples in COLL, which is COLL′. Then FragEnt contains a tuple for each of these
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Figure 2: Relations.

entities with fno = 1. For all the other entities FragEnt has a tuple with the respective entity and fno = 2.
The lαβ-model is able to predict the size of the (semi)join between COLL′ and Q. We are interested in how
good the prediction of this model is. Therefore, we have set up a series of experiments in order to extensively
evaluate the accuracy of this model. We vary the data distribution in COLL and the length of the query, i.e.,
the number of entities in Q. For several reasons such a prediction is useful.

First of all, when working in main memory COLL′ should fit into main memory, as well as the result between
the (semi)join of COLL′ and Q, during query evaluation time. Therefore, we need to have a notion of the
size of that result at design time to be able to determine how much space is left in memory for COLL′. A
selectivity value helps to determine the size of COLL′, or the m value corresponding to it.

Secondly, fragmentation is a tool useful for distributing or parallelizing (shared nothing) databases. Espe-
cially in this case, not all the details of the data distribution are available at the global level [HKWY97]. But
one still wants to make predictions about the costs, either at design time to distribute the fragments over
the nodes, or at run-time to divide the query task over the nodes. So, the used selectivity model preferably
does not require the data distribution to be known globally when the model is used.

Thirdly, fragmentation might facilitate top-N query optimization. As proposed in [DR99], one can optimize
for top-N queries by guessing a subset of the original data that hopefully suffices to compute the top-N,
leaving out the computational effort that otherwise would have been needed to evaluate the ignored data.
In particular in the area of information retrieval, top-N queries play an important role: in most cases the
top of a ranked list of documents is required. Top-N optimization techniques, therefore, have been subject
to extensive research in the information retrieval field. It is quite common to start query evaluation with
the terms with the lowest document frequency, being the most discriminative terms3. The question should
be, both in the information retrieval case as well as in the general case of probabilistic top-N optimization,
how to determine the proper size of a subset, e.g., fragment. Cost aspects, and, therefore, a notion of the
query selectivity, play an important role in guessing the size of a subset. Of course, a notion of quality plays
a role, too. The smaller the fragment used to compute the top-N, the worse the quality will be, which might

3Note that in our case terms can be seen as entities.
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require additional fragments to be taken into account to reach the desired top-N (see [BVBA01, BHC+01]).

Finally, when dealing in a real world situation the query load can be quite high. This is particularly the case
for (new) advanced application areas such as search engines. The ability to handle multiple queries within
a short time of each other is therefore important. A high query load often means that some parts of the
data are needed quite frequently, since many query results rely on it. Multi-query optimization techniques
[CKSA96] exploit this property by trying to reuse (intermediate) query results with regard to a query to
speed up evaluation of another. Fragments might be reused as well in this context when more queries rely
on it within a short time of each other. A notion of costs, and therefore selectivity, is needed to determine
which fragments to reuse or recompute intermediate query results for later.

3 Selectivity model

In this section we reformulate our lαβ-model. As mentioned above, we adopt a more generic notation in this
paper in contrast with [BCBA]. This new notation is shown in the Figures 3(a) and 3(b). We use entities
[Expr. 5], which may be terms in an information retrieval case, in a certain ordered entity domain [Expr. 6].
We use lists of entities [Expr. 7], which may be documents in an Information Retrieval case. Similar to the
documents spanning the term space, these lists span the entity space [Expr. 8]. Note that therefore C is a
list covering of E . The set COLL [Expr. 9] is the set wise counterpart of our relation COLL.

ei ≡ ‘an entity’ (5)

E ≡ [e1, e2, e3, . . . , en] (6)

Lj ≡ [ei|ei is ‘an entity’] (7)

C ≡







L1,L2,L3, . . . ,L|C |

∣

∣

∣

∣

∣

∣

|C |
⋃

j=1

Lj = E







(8)

COLL ≡ {(ei,Lj)|ei ∈ Lj ∈ C} (9)

cf i ≡ |{(ei,Lj)|∀j : ei ∈ Lj ∈ C}| (10)

CF ≡ [cf 1, cf 2, cf 3, . . . , cf n] (11)

Q ≡ {ei|ei ∈ E}, |Q | = l (12)

(a)

E ′ ≡
[

ei

∣

∣ei ∈ E ∧ ∀{ei′∈E\E ′}cf i ≤ cf i′

]

,

m = |E ′| (13)

FE ≡
{

(1,E ′), (2, E \ E ′)
}

(14)

Q ′ ≡ {ei|ei ∈ Q ∧ ei ∈ E ′} (15)

COLL′ ≡ {(ei,Lj)|ei ∈ E ′ ∧ ei ∈ Lj ∈ C}
⊂ COLL (16)

COLL′
Q ≡ {(ei,Lj)|ei ∈ Q ′ ∧ ei ∈ Lj ∈ C}

⊂ COLL′ (17)

CF ′ ≡ [cf i|ei ∈ E ′] (18)

(b)

Figure 3: Basic mathematical definitions.

For each of the entities ei, we distinguish the number of lists Lj in which it occurs. We call this the covering
frequency cf i [Expr. 10] of ei. The list CF [Expr. 11] is the counterpart of our (histogram) table Frequency.
The relation Q is modeled as the set Q [Expr. 12].

As we explained before, we are only interested in the m entities with the lowest covering frequencies, being
the most restrictive ones in COLL. We define the subset E ′ of E , containing only those entities [Expr. 13].
The set FE contains two pairs corresponding to the two fragments similar to the FragEnt relation but
now expressed formally in a nested manner [Expr. 14]. In terms of FE , we are thus only interested in
fragment 1 denoted by the pair (1,E ′). We can also define Q ′ as the version of Q restricted to those entities
[Expr. 15]. COLL′ [Expr. 16] represents the fragment COLL′ of COLL restricted to these least frequent entities
and COLL′

Q [Expr. 17] represents the set wise counterpart of the semijoin between COLL′ and Q. Finally,
CF ′ [Expr. 18] denotes the list of covering frequencies corresponding to the entities of interest.

Using these definitions the actual (measured) selectivity is defined as shown in Figure 4. Our selectivity
estimator, see Figure 5, is defined as the product of the query length l and two factors: α [Figure 6, Expr. 21]
and β [Figure 6, Expr. 22]. The α can be interpreted as the conditional expected value of the fraction of
COLL′ selected by an arbitrary entity in Q given that the entity in question is known to be in E ′. The β

is the probability that an entity in Q is in E ′.
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selmeasured ≡ |COLL′
Q |

|COLL′| (19)

Figure 4: Measured selectivity definition.

selestimated ≡ lαβ (20)

Figure 5: Estimated selectivity definition.

4 Data distributions

In this section, we describe the five distributions for which we have evaluated our lαβ-model: uniform
distribution, normal distribution, exponential distribution, Pearson distribution, and Zipf distribution. Each
of these distributions is well-known in the field of selectivity estimation. We describe each of them and stress
some practical problems one has to take care of when using the distribution functions to sample data sets.

We refer to Figure 7 for an overview of the distribution density functions f(x). In the Figures 8 to 12 we
plotted the distribution density f(x) and the corresponding cumulative distribution F (x) for each of the
distributions.

We chose the parameters4 such that each distribution spans its entire range on the x-domain [0, 1]. For
those distribution density functions having the x-axis as horizontal asymptote for x → ∞, we chose the
parameters such that this asymptote is reached within the numerical precision of our experimental system,
i.e., f(x) < numerical precision for x ≥ 1, so numerically f(1) = 0. For the distributions with the x-axis
as horizontal asymptote for x → −∞ we followed a similar approach to achieve that numerically f(0) = 0.
Since, we plan to use these distributions for sampling a very large database we expect this approach to be
valid.

Based on the knowledge that the normal distribution is symmetrical, we chose µ = 0.5. The σ was then
determined by numerically finding the left and right horizontal asymptote as we described above. A similar
approach was used for the exponential distribution, using µ = 0.

For the Pearson distribution the parameters a, b, and p determine the location and the slopes of its peak.
These can be chosen arbitrarily within certain limits. Since, we are mainly interested in highly skewed
distributions — flat distributions we consider as rather easy, and therefore less interesting, to estimate the
selectivity for — we chose a, b, and p such that f(x) indeed is highly skewed. Furthermore, we scaled the
distribution such that numerically it reaches its asymptote to make sure that the distribution occupied its
entire range within the [0, 1] domain.

The Zipf distribution is a special case, since we used a Zipfian distributed real world data set in [BCBA]
and since it has some particular numerical properties. For clarity we start with describing the standard Zipf
distribution before we switch to the variant we used in our experiments. Note that Figure 12 shows our
variant and not the standard Zipf distribution. The standard Zipf distribution density is f(x) = 1

xp where

4Note that in many cases the a-parameter is called α and the b-parameter β in the distribution functions. Since, we already
use α and β in our model with a completely different meaning, we use a and b instead to avoid ambiguity.

α ≡
∑

cf i∈CF ′

cf 2
i





∑

cf i∈CF ′

cf i





2 =

∑

cf i∈CF ′

cf 2
i

|COLL′|2 (21)

β ≡
∑

cf i∈CF ′

cf i
∑

cf i∈CF

cf i

=
|COLL′|
|COLL| (22)

Figure 6: Additional definitions.
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Uniform distribution:

f(x) ≡ 1 (23)

Normal distribution:

f(x) ≡ 1

σ
√

2π
e

−(x−µ)2

2σ2 , where: µ = 0.5, σ = 0.0875771730212624 (24)

Exponential distribution:

f(x) ≡ 1

b
e

µ−x
b , where: µ = 0, b = 0.051125 (25)

Pearson (type III) distribution:

f(x) ≡ 1

bΓ(p)

(x − a

b

)p−1

e(−
x−a

b ), where: p = 4, a = 0, b = 0.0075 (26)

Zipf distribution:

f(x) ≡ a

b − x
+ c, where: a = 0.169183259456481, b = 1.00099900199501, c = −0.169014413719988 (27)

Figure 7: Distribution density functions.
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Figure 8: Uniform distribution.
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Figure 9: Normal distribution.

7



0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f(
x)

x

(a) Distribution density.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
(x

)

x

(b) Cumulative distribution.

Figure 10: Exponential distribution.
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Figure 11: Pearson distribution.
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Figure 12: Zipf distribution.
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p ≈ 1. This function has the y-axis as a vertical asymptote next to the x-axis as horizontal asymptote.
Furthermore, for p = 1 its F (x) is not properly defined as it goes to ∞. Also, f(x) closes in on its
asymptotes much slower than the other distributions we are interested in. In [BCBA] we used a mirrored
Zipfian distribution for convenience sake, i.e., we switched the left and right hand side. To allow for better
comparison with [BCBA] we use a mirrored f(x) in this paper as well. To overcome the numerical problems
with the asymptotes and to guarantee the existence of F (x) we also slightly shifted f(x) over a small distance,
both vertically as well as horizontally5. Requiring that f(0) = 0 and F (1) = 1 we get two equations with
three unknown variables. This leaves one of the three free to be chosen arbitrarily, though within certain
limits. Choosing this third parameter determines how skewed the distribution becomes. As for the Pearson
distribution, we chose it to obtain a very skewed distribution. However, in this case we let our choice also
be inspired by the skewedness of the real world, i.e., TREC [TRE], data sets as used in [BCBA] to allow
better comparison of the results. As for the horizontally scaling of the normal, exponential, and Pearson
distributions, we consider this approach to fix the numerical problems with the Zipf distribution as valid
due to the large numbers planned to be involved when sampling our test database.

5 Experimental setup

In order to perform our experiments, we have chosen the MySQL (version 3.23.49a) database environment
as platform in combination with Perl (version 5.005 03) running on a PC running Linux (version 2.2.16-3
#1 SMP).

Our experimental setup is generic of nature and consists of six steps as shown in Figure 13. We first define
a database scheme, which is the same for each data distribution. As second, we generate the content of the
database according to the characteristics of a given data distribution. Then, the third step generates a set
of queries, and the fourth step the distinguished fragmentation. Then, our program performs the semi-join
between the first fragment and the queries, followed by the step that computes the estimated and actual
selectivity. Finally, these results are aggregated and error statistics are computed. We run this procedure
for each of the five distributions of interest as described in Section 4.

The database corresponding to each distribution contains 100000 entities. The query lengths range from 5
to 50 by steps of 5. For each query length, we sample 50 random queries using the same distribution as the
data as represented by Frequency. We use the Monte Carlo method [HATB98] as sampling method. The
relative fragment m

n
sizes that we considered are 0.05, 0.10, 0.15, . . ., 0.95, and 1.00.

The relative error we compute in the sixth step is defined as follows.

Definition 1 (Relative error) The relative error εx of an estimated (selectivity) value x of a variable x,
i.e., a measured selectivity, is defined as:

εx ≡
x − x

x

for x 6= 0.

We want to stress that the relative error is not defined for x = 0.

6 Experimental results

In this section, we present the results of the experiments we did as described in the previous section.

For each of the five distributions of interest, we plotted the estimated vs. the measured selectivity in the
Figures 15(a), 16(a), 17(a), 18(a), and 19(a). In the remainder of this section we refer to these figures as

5Note that we choose p = 1. This makes the function easier to understand without a significant impact on the results since
p would have been close to 1 anyway.
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[Step 1] Initialization
Create a database with the following relations:

Frequency(ent , freq , cumfreqstart , cumfreqstop)

FragEnt(fno, ent)

QSet(qno, ent)

SET m := 0.05 · n
Remarks:

• We added two extra columns to Frequency, where for ent = e1 holds cumfreqstart = 0, for entity = en holds cumfreqstop = 1, and for all cases
cumfreqstop = cumfreqstart + freq.

• We use a binary relation QSet instead of Q to model a set of queries Q, where qno ∈ {1, 2, 3, . . . , 500}.

• The maximum qno of 500 follows directly from the fact that we have 50 queries of each length and we have 10 different lengths, i.e, 5, 10, 15,
. . ., 45, and 50.

[Step 2] Generate histogram
Using the formula for f(x) for the distribution of interest we compute the values in the Frequency table using numerical
integration.

[Step 3] Generate queries
Via Monte Carlo sampling [HATB98], using the two (additional) last columns of Frequency, we fill QSet.

Remarks:

• |QSet| = 50 · (5 + 10 + 15 + . . . + 45 + 50) = 50 · 275 = 13750, since we have 50 queries of each length and we have as many as the query length
is large tuples per query.

• We applied the Monte Carlo method iteratively to remove any duplicate entities within queries, since our model requires that no duplicate
entities exist in the queries.

[Step 4] Generate fragmentation
Based on the frequencies in Frequency and a given ratio m

n
we determine FragEnt.

Remarks:

• We only generate the entries for fno = 1, since we are only interested in the first fragment.

• We do not actually fragment the histogram but only construct FragEnt and we generate fragments on the fly when needed via joining with
FragEnt.

[Step 5] Compute selectivity
Compute the results:

[a] Compute selestimated per query.

[b] Compute selmeasured per query via joining QSet, FragEnt, and Frequency, group by qno — and, strictly speaking,
fno, but we know we only have one fno value, so grouping on fno is superfluous — followed by summing the freq
values per group.

Store the results for this fragmentation.

IF NOT(m
n

= 1) THEN

SET m := m + 0.05 · n
GO TO Step 4

END IF

Remark:

• Since, the freq-values in Frequency are normalized to sum to 1 the computations of sel estimated are slightly different than as specified in Expr. 21
and 22 to adjust for this.

[Step 6] Aggregate results
Gather the results and compute the error and relative error for all fragmentations.

Generate an estimated vs. measured selectivity plot and a relative error vs. relative fragment size, i.e., m
n

, plot.

Figure 13: Experimental process.
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Figure 14: Legend of Figures 15(a), 16(a), 17(a), 18(a), and 19(a).

the (a) plots. We also plotted the ideal line for each of the distribution. This line represents the case where
the estimated selectivity value equals the measured selectivity value. If our selectivity model were perfect,
all points would be on this line. Note that each fragmentation has its own point markers. For a legend
explaining which marker belongs to which fragmentation we refer to Figure 146.

To give an impression of the effect of the fragment size on the accuracy of our lαβ-selectivity model we
also plotted the relative error vs. the relative fragment size, i.e., m

n
, for each of the distributions in the

Figures 15(b), 16(b), 17(b), 18(b), and 19(b). In the remainder of this section we refer to these figures as
the (b) plots. Note that the relative error is only defined for those cases where the measured selectivity
value is not equal to 0.

The remainder of this section is dedicated to the discussion of the results.

When having a first glance at the results shown in the (a) plots one notices directly that the lαβ estimated
selectivity indeed represents a good average of the actual selectivities. Looking at the (b) plots one sees,
however, that this is not entirely true, since many of the relative errors are positive. This means that in
many cases the lαβ-model overestimates the selectivity value. This is not very surprising when we look at
the construction of the lαβ-model in [BCBA]. It shows that the lαβ-model is an upper bound for the actual
expected value of the selectivity. Also the larger relative errors mainly occur for the larger relative fragments
sizes. A further analysis of the results learned us that the larger relative errors mainly occur for the smaller
selectivities. This means that the error in absolute numbers is not so large after all. The only exception to
this observation is the uniform distribution. This corresponds quite well with what we expected.

For all distributions, except the uniform, the peak in the distribution is only captured by the fragment of
interest for the larger fragment sizes. For increasing fragment size, the amount of data that Q is matched
against grows rapidly resulting in lower selectivity values since the |COLL′| part in Expr. 19 increases. The
larger the part of the peak that is included in the fragment, the bigger the chances that excess selectivities
occur resulting in increasing chances for larger estimation errors. Note, however, that for the special case
where the fragment COLL’ equals the entire relation COLL, the relative error is about 0 for all distributions.

For smaller fragments of interest and the uniform distribution, the distribution is flat or nearly flat. This
means that for decreasing fragment sizes chances increase that an entity in Q is not in COLL’ resulting
in increasing chances that entities do not contribute to the measured selectivity. In turn, this results in
increasing chances for estimation errors. A closer look at the log files learned that, in particular for the
smallest fragments, the probability of entities not being in the fragment is so large that the measured
selectivity value becomes very small. So also here, the largest relative errors occurring for the smallest
selectivity values appears to be logical.

6Note that due to the number of data points most of the different symbols cannot be distinguished in the (a) plots. However,
since some still can be distinguished we found it better to present the plots instead of using a single point symbol for all
fragmentations.
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Figure 15: Uniform distribution.
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Figure 16: Normal distribution.
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(b) Relative error vs. relative fragment size.

Figure 17: Exponential distribution.
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Figure 18: Pearson distribution.
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Figure 19: Zipf distribution.
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Finally, we have some closing remarks regarding the effectiveness of our lαβ-model. The errors might seem
very large for a selectivity model, but we think this is acceptable given that these errors are not so large in
absolute terms (as we explained) and given that our model only uses very little information when estimating
the selectivity which has interesting performance benefits as explained in first two sections of this paper.
Furthermore, note that our lαβ-model is not just another parametric model since it takes fragmentation
into account and also does not presume any (parameterized) standard distribution function. As shown,
our lαβ-model performs very well for the unfragmented case as is obvious from the relative error being
approximately 0 for this case for all distributions.

7 Conclusions and future research

It is widely recognized that a good estimation of the selectivity of a query is of crucial importance for
query processing. Therefore, a lot of research has been devoted towards the prediction of selectivity values,
resulting in different selectivity models. However, most of these models assume that data is uniformly
distributed and/or are focused towards a specific application. In many (emerging) advanced applications
the assumption that data is uniformly distributed does not hold, e.g., in the field of information retrieval
data is distributed according to Zipf’s law.

In this paper, we generalized the so-called lαβ selectivity model. This model claims to be independent
of a specific data distribution. Therefore, we pose ourselves the question how accurate is the lαβ-model
for different types of data distribution. The selectivity is defined as the fraction of a relation COLL that
is selected by another relation Q. We consider five types of well-known data distributions namely, the
uniform distribution, the normal distribution, the exponential distribution, Pearson’s distribution, and Zipf’s
distribution. For each data distribution, we have ran different sets of queries and compared the selectivity
obtained by applying the lαβ-model with the selectivity that we have measured. Furthermore, we have ran
these sets of queries also against different fragment sizes. Our overall conclusion is that that the selectivity
values obtained by applying the lαβ-model meets the measured values well. Especially, for the skewed
distributions the lαβ-model yields good results. Therefore, the lαβ-model is an accurate model that can
predict the selectivity in a quite cheap way. The reader might argue that the errors might seem very large
for a selectivity model. However, as we explained in the previous section, we think this is acceptable given
that these errors are not so large in absolute terms and given that our model only uses very little information
when estimating the selectivity which has interesting performance benefits as explained in first two sections
of this paper

As in [BCBA], we have assumed that the query and data distribution are the same and that the relation
Q contains no duplicate entities. A topic for future research is to evaluate the lαβ-model without these
assumptions. Another topic for future research is a (formal) error analysis for the lαβ-model, i.e., the
derivation of a (mathematical) formula that is able to predict the error caused by the model. Finally, we
plan to compare the lαβ-model with other selectivity models, such as the parametric and non-parametric
ones.
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