Activity Level Estimator on a Commercial Mobile Phone

feasibility study

Jody Hausmann, Katarzyna Wac

IWFAR2011 at PERVASIVE - 12th June 2011

Motivation

- Lack of physical activity which is increasing the risk of chronic diseases
- How to unobtrusively monitor the physical activity of people?
- How to ensure that user carries the designated device continuously?
- How to motivate people to be more active daily?
- Preventive care
- How to present the physical activity to the user?
- Intensity levels?
- Energy expenditure (EE) and burned calories estimation?
- Counting steps?

The Smartphone Factor

- Unobtrusive - carried around along the day
- 3D accelerometer and other built-in sensors
- Possible continuously running background services
- Activity Level Estimator (ALE)
- Android-based software
- Physical activity level duration, EE estimation
- Assumes that the phone is in the person's pocket

Activity Level Estimator (ALE)

- Estimation of the calories burned
- Per activity level
- Overall estimation for 24 hours
- 5 activity levels, from sedentary to vigorous
- Estimation based on
- Metabolic Equivalent Task (MET) table
- Resting Metabolic Rate (RMR)

Prototype

```
4\psi`E
-..|l完 (@) 13:16
    ALE
        Live monitoring
        calorie for
        activities
    529
```

Calories burned in 24h
2023

Very low: 1:0:50

Low: 0:31:30

Moderate: 0:35:0

Vigorous: 0:1:5

Algorithm: Raw Data \& Sample Median

Raw data

Thresholds

- Signals from the accelerometer with gravity compensation \rightarrow acceleration vector
- Sample: 1.5 seconds time window (~ 60 data points)
- Filtering
- Keeps the high values of the sample
- Smooth the signal
- Sample median value
- Median compared to thresholds that matching to a MET value

Algorithm: Thresholds \& MET

Raw data
 Matching MET
 EE estimation

- Threshold defined via user study
- 15 participants
- 30 steps at 3 levels
- 5 thresholds corresponding to 5 activities levels
- Sedentary $=1$ MET
- Very low = 2.5 MET
- Low = 4.5 MET
- Moderate $=6 \mathrm{MET}$
- Vigorous = 9 MET
- Influence of height, weight and gender?
- Main variable: gender
- Other variables
- Clothes
- Shoes

First ALE Validation

- SenseWear from BodyMedia
- MET values calibrated
- Study Design
- Short terms study
- 7 participants walk at least 15 minutes
- Long term study
- 1 participant for 3 days, daily activities

Results

Short term study

- Average 14\% MET difference per minute
- Overestimation 7\% of MET for the whole test duration

Long term study

- Average 23.4\% MET difference per minute for all kinds of activity levels
- Underestimation of calories by 27.9\%
- Driving a car or working on a computer not detected by ALE

Example Result

- 42 minutes walk on a road forest with small hills and irregular ground, user stopped several times

Results Discussion

- ALE
- on average 86% accurate for walking
- more sensitive for body movements than SenseWear
- ALE granularity: 2 seconds vs SenseWear: 1 minute
- unable to detect physical activities like working on a computer, driving a car

Second ALE Validation: In Progress

- Institute of Science of Movement and Sports Medicine at University of Geneva
- Indirect Calorimetry and treadmill
- Study Design
- 12 participants
- Walk on a treadmill
- 4 thresholds speed ($3-6 \mathrm{~km} / \mathrm{h}$)
- 5 minutes per threshold speed

Preliminary Results

—Average MET ALE —Indirect Calorimetry ■ Indirect Calorimetry valid point

Participants
$N=12$

MET error per minute

$3 \mathrm{~km} / \mathrm{h}$	$4 \mathrm{~km} / \mathrm{h}$	$5 \mathrm{~km} / \mathrm{h}$	$6 \mathrm{~km} / \mathrm{h}$	Average
10.01%	7.81%	9.15%	12.10%	9.77%

FACULTÉ DES SCIENCES ÉCONOMIQUES ET SOCIALES Institute of Services Science

Conclusion and Future Work

- Work in progress with promising results
- Accurate EE estimation with a commercial mobile phone
- Avg accuracy 86\% with BodyMedia
- Avg accuracy 90.3\% with Indirect Calorimetry (in progress)
- Ongoing user study and a new one in real terrain conditions (September)
- Future Work
- Add GPS to get altitude (e.g., hill) and other forms of transport (bike)
- User interface design and feedback to user
- Social network factor
- Overall goal
- behavioral change for sedentary people

Questions ?

Jody Haumann

Unige, ISS, Quality of Life

www.qol.unige.ch
Jody.Hausmann@unige.ch

