

Activity Level Estimator on a Commercial Mobile Phone

feasibility study

Jody Hausmann, Katarzyna Wac

IWFAR2011 at PERVASIVE - 12th June 2011

Motivation

- Lack of physical activity which is increasing the risk of chronic diseases
 - How to unobtrusively monitor the physical activity of people?
 - How to ensure that user carries the designated device continuously?
- How to motivate people to be more active daily?
 - Preventive care
- How to present the physical activity to the user?
 - Intensity levels?
 - Energy expenditure (EE) and burned calories estimation?
 - Counting steps?

Foerster and Fahrenberg 2000; Fogg 2002; Barralon, Vuillerme et al. 2006; Connelly, Faber et al. 2006

The Smartphone Factor

- Unobtrusive carried around along the day
 - 3D accelerometer and other built-in sensors
 - Possible continuously running background services

- Activity Level Estimator (ALE)
 - Android-based software
 - Physical activity level duration, EE estimation
 - Assumes that the phone is in the person's pocket

http://www.android.com

Activity Level Estimator (ALE)

- Estimation of the calories burned
 - Per activity level
 - Overall estimation for 24 hours
 - 5 activity levels, from sedentary to vigorous
- Estimation based on
 - Metabolic Equivalent Task (MET) table
 - Resting Metabolic Rate (RMR)

Harris and Benedict 1918; Ainsworth, Haskell et al. 2000; Byrne, Hills et al. 2005

Prototype

FACULTÉ DES SCIENCES ÉCONOMIQUES ET SOCIALES Institute of Services Science

Algorithm: Raw Data & Sample Median

Raw data Thresholds

- Signals from the accelerometer with gravity compensation → acceleration vector
 - Sample: 1.5 seconds time window (~60 data points)
- Filtering
 - Keeps the high values of the sample
 - Smooth the signal
- Sample median value
 - Median compared to thresholds that matching to a MET value

Algorithm: Thresholds & MET

Raw data

Thresholds

Matching MET

EE estimation

- Threshold defined via user study
 - 15 participants
 - 30 steps at 3 levels
- 5 thresholds corresponding to 5 activities levels
 - Sedentary = 1 MET
 - Very low = 2.5 MET
 - Low = 4.5 MET
 - Moderate = 6 MET
 - Vigorous = 9 MET

- Influence of height, weight and gender?
 - Main variable: gender
- Other variables
 - Clothes
 - Shoes

First ALE Validation

- SenseWear from BodyMedia
 - MET values calibrated
- Study Design
 - Short terms study
 - 7 participants walk at least 15 minutes
 - Long term study
 - 1 participant for 3 days, daily activities

Jakicic, Marcus et al. 2004; St-Onge, Mignault et al. 2007; BodyMedia Inc 2010

Results

Short term study

- Average 14% MET difference per minute
- Overestimation 7% of MET for the whole test duration

Long term study

- Average 23.4% MET difference per minute for all kinds of activity levels
- Underestimation of calories by 27.9%
- Driving a car or working on a computer not detected by ALE

Wac and Hausmann 2011

Example Result

 42 minutes walk on a road forest with small hills and irregular ground, user stopped several times

Results Discussion

- ALE
 - on average 86% accurate for walking
 - more sensitive for body movements than SenseWear
 - ALE granularity: 2 seconds vs SenseWear: 1 minute
 - unable to detect physical activities like working on a computer, driving a car

Second ALE Validation: In Progress

- Institute of Science of Movement and Sports Medicine at University of Geneva
- Indirect Calorimetry and treadmill
- Study Design
 - 12 participants
 - Walk on a treadmill
 - 4 thresholds speed (3 6 km/h)
 - 5 minutes per threshold speed

Preliminary Results

Participants	MET error per minute				
N = 12	3 km/h	4 km/h	5 km/h	6 km/h	Average
	10.01%	7.81%	9.15%	12.10%	9.77%

FACULTÉ DES SCIENCES ÉCONOMIQUES ET SOCIALES Institute of Services Science

Conclusion and Future Work

- Work in progress with promising results
 - Accurate EE estimation with a commercial mobile phone
 - Avg accuracy 86% with BodyMedia
 - Avg accuracy 90.3% with Indirect Calorimetry (in progress)
 - Ongoing user study and a new one in real terrain conditions (September)
- Future Work
 - Add GPS to get altitude (e.g., hill) and other forms of transport (bike)
 - User interface design and feedback to user
 - Social network factor
- Overall goal
 - behavioral change for sedentary people

Questions?

Jody Haumann

Unige, ISS, Quality of Life

www.qol.unige.ch Jody.Hausmann@unige.ch