
Google Android Tool to check performance
requirements

Mattia Gustarini (Mattia.Gustarini@usi.ch)
Software Performance Laboratory project - Matthias Hauswirth (Matthias.Hauswirth@unisi.ch)

Friday, December 11, 2009

Project proposal 2
Topic 2

How much 2

Dependencies 2

Core feature 2

Optional features 2

Deliverables 2

RoadMap 3
Performance guidelines evaluation 3

Schedule 3

How to, Android Performance Tool at work 4
Examples 4

From command line 4

As Eclipse Plugin 4

Google Android Tool to check performance requirements 1

mailto:Mattia.Gustarini@usi.ch
mailto:Mattia.Gustarini@usi.ch
mailto:Matthias.Hauswirth@unisi.ch
mailto:Matthias.Hauswirth@unisi.ch

1. Project proposal

1.1. Topic
In the Google Android developers web site1 in the Dev Guide it is possible to find a

section that describes the Best Practice to follow in order to write an android application. One
of its subsections gives a detailed list on how to design applications for performance2. Here
you can find a series of guidelines and some of them can be checked automatically by looking
the byte code of the .class Java files. Unfortunately Google doesn’t provide a tool that can
check automatically those guidelines and the developer must remember and apply all the
suggestions on its own.

1.2. How much
The aim of this project is to provide the missing tool to the developers of the Android

applications and maybe in a second step integrate it on the Google ADT plugin for Eclipse.
The tool will try to cover all the practices that can be checked by looking directly to the

Java class code. It will be a stand alone “product” like all the tools that are currently offered
by Google to develop Android applications. A developer that doesn’t use Eclipse must be able
to execute it on the Android application project structure without the help of the plugin.

How to integrate the tool on the Google plugin is not know and this option will be
exploited only when at least the automatic checks directly related to the source code are done.
The tool will for sure produce an xml file that can be used to easily integrate it in the plugin.
The integration can be problematic so we must check in advance this possibility, but how?
(where is the Google project of this plugin? Is it open source? Is it integrated with the Android
platform open source project?3).

1.3. Dependencies
1. Google Android application performance guidelines
2. Android application project structure
3. ASM
4. ADT plugin source code (possible)

1.4. Core feature
We expect to deliver a tool able to automatically check the Google Android

performance guidelines by looking to the Java .class byte code of an Android application
project.

1.5. Optional features
Integrate the tool in the ADT plugin used to develop Android application in Eclipse.

1.6. Deliverables
This updated project report and the software tool.

Mattia Gustarini Friday, December 11, 2009

Google Android Tool to check performance requirements 2

1 http://developer.android.com
2 http://developer.android.com/guide/practices/design/performance.html
3 http://source.android.com/

http://developer.android.com
http://developer.android.com
http://developer.android.com/guide/practices/design/performance.html
http://developer.android.com/guide/practices/design/performance.html
http://source.android.com
http://source.android.com

2. RoadMap

2.1. Performance guidelines evaluation
guideline difficulty

Avoid Creating Objects hard

Use Native Methods hard

Prefer Virtual Over Interface easy

Prefer Static Over Virtual medium

Avoid Internal Getters/Setters medium

Cache Field Lookups hard

Declare Constants Final medium

Use Enhanced For Loop Syntax With Caution medium

Avoid Enums easy

Use Package Scope with Inner Classes medium

Avoid Float easy

2.2. Schedule
The project has a duration of 6 weeks, for each week we define the guideline we wish to

implement and possibly some extra work that we have to do. The decision will be based on
the difficulty assigned to each guideline.

Week 1:
1. create the structure to retrieve the bytecode from an Android project
2. Prefer Virtual Over Interface
3. create the structure to represent the tool’s output
4. update this document

Week 2:
1. Avoid Float
2. Use Package Scope with Inner Classes
3. Avoid Internal Getters/Setters
4. update this document

Week 3:
1. Avoid Internal Getters/Setters (cont.)
2. Avoid Enums
3. check if possible to generate an output for eclipse (error markers)
4. update this document

Mattia Gustarini Friday, December 11, 2009

Google Android Tool to check performance requirements 3

http://developer.android.com/guide/practices/design/performance.html#object_creation
http://developer.android.com/guide/practices/design/performance.html#object_creation
http://developer.android.com/guide/practices/design/performance.html#native_methods
http://developer.android.com/guide/practices/design/performance.html#native_methods
http://developer.android.com/guide/practices/design/performance.html#prefer_virtual
http://developer.android.com/guide/practices/design/performance.html#prefer_virtual
http://developer.android.com/guide/practices/design/performance.html#prefer_static
http://developer.android.com/guide/practices/design/performance.html#prefer_static
http://developer.android.com/guide/practices/design/performance.html#internal_get_set
http://developer.android.com/guide/practices/design/performance.html#internal_get_set
http://developer.android.com/guide/practices/design/performance.html#cache_fields
http://developer.android.com/guide/practices/design/performance.html#cache_fields
http://developer.android.com/guide/practices/design/performance.html#use_final
http://developer.android.com/guide/practices/design/performance.html#use_final
http://developer.android.com/guide/practices/design/performance.html#foreach
http://developer.android.com/guide/practices/design/performance.html#foreach
http://developer.android.com/guide/practices/design/performance.html#avoid_enums
http://developer.android.com/guide/practices/design/performance.html#avoid_enums
http://developer.android.com/guide/practices/design/performance.html#package_inner
http://developer.android.com/guide/practices/design/performance.html#package_inner
http://developer.android.com/guide/practices/design/performance.html#avoidfloat
http://developer.android.com/guide/practices/design/performance.html#avoidfloat
http://developer.android.com/guide/practices/design/performance.html#prefer_virtual
http://developer.android.com/guide/practices/design/performance.html#prefer_virtual
http://developer.android.com/guide/practices/design/performance.html#avoidfloat
http://developer.android.com/guide/practices/design/performance.html#avoidfloat
http://developer.android.com/guide/practices/design/performance.html#package_inner
http://developer.android.com/guide/practices/design/performance.html#package_inner
http://developer.android.com/guide/practices/design/performance.html#internal_get_set
http://developer.android.com/guide/practices/design/performance.html#internal_get_set
http://developer.android.com/guide/practices/design/performance.html#internal_get_set
http://developer.android.com/guide/practices/design/performance.html#internal_get_set
http://developer.android.com/guide/practices/design/performance.html#avoid_enums
http://developer.android.com/guide/practices/design/performance.html#avoid_enums

Week 4:
1. Prefer Static Over Virtual
2. Declare Constants Final
3. update this document

Week 5:
1. Use Enhanced For Loop Syntax With Caution
2. feasibility study: is it possible to easily create a plugin for Eclipse?
3. update this document

Week 6:
1. Create an Eclipse plugin to use the tool
2. update this document

3. How to, Android Performance Tool at work

3.1. Android test projects
In the project zip you can find two Android projects ready to be used to test the tool.

The one called AndroidToolTestProject is a project created to check all the analysis
implemented in the tool. The other project called ApiDemos is a demo project from Google
containing a lot of classes that can be checked with the tool.

3.2. From command line
To run the tool from the command line do the following steps:

1. create the apt.jar file with the script create_apt_jar
2. launch the tool with the script aptool with the following arguments:

a) aptool <android project path>
(to execute the verbose version of the tool)

b) aptool <android project path> <xml file name>
(to use the quite option, to output the result of the analysis to an xml file)

For example with the two given project:
1. AndroidToolTestProject

a) aptool AndroidToolTestProject
b) aptool AndroidToolTestProject androidtooltestproject.xml

2. ApiDemos (it will produce a “lot” of output)
a) aptool ApiDemos
b) aptool ApiDemos apidemos.xml

3.3. As Eclipse Plugin
To test the plugin simply import the com.android.ide.eclipse.apt project in Eclipse (the

used Eclipse must support plug-in Development!) and then launch it as an Eclipse application.
In the Eclipse version with the plugin that is running import the two Android projects
ApiDemos, AndroidToolTestProject. The two projects are already Eclipse Android projects
(they must have the Android project nature), so in order to test the plugin you may not need to
install the Android development plugin (if it is not the case go here: Installing ADT Eclipse
plugin).

To analyze a project with the tool select one of the Android projects (only with them it
is going to work, otherwise an error message will be showed...) and press this little icon .

Mattia Gustarini Friday, December 11, 2009

Google Android Tool to check performance requirements 4

http://developer.android.com/guide/practices/design/performance.html#prefer_static
http://developer.android.com/guide/practices/design/performance.html#prefer_static
http://developer.android.com/guide/practices/design/performance.html#use_final
http://developer.android.com/guide/practices/design/performance.html#use_final
http://developer.android.com/guide/practices/design/performance.html#foreach
http://developer.android.com/guide/practices/design/performance.html#foreach
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html

Now all the resource where the above guidelines are not respected should contain info-
markers with the description of the problems found by the analyzers of the tool. If you want
you can correct the problems, but in order to see if your work is successful you need to save
the resource/s (in order to build the modified Java file/s, remember the tool works on class
files), reselect the project (sorry analysis of a single resource is not yet supported...) and click
on the little icon again. If you did a good job the marker/s should disappear.

As last comment we need to say that markers are transient, so when you close the
Eclipse application where the plugin “is running” they are going to disappear. This as well the
fact that the user has to press the button to start the analysis are implementation choices to not
have a lot of markers on the resources and to allow the user to chose when to see them.

Mattia Gustarini Friday, December 11, 2009

Google Android Tool to check performance requirements 5

